Total Synthesis of Cycloisodityrosine, RA-VII, Deoxybouvardin, and N^{29} -Desmethyl-RA-VII: Identification of the Pharmacophore and Reversal of the Subunit Functional Roles

Dale L. Boger,* Daniel Yohannes, Jiacheng Zhou, and Michael A. Patane

Contribution from the Departments of Chemistry and Medicinal Chemistry, Purdue University, West Lafayette, Indiana, 47907, and Department of Chemistry, The Scripps Research Institute, 10666 North Torrey Pines Road, La Jolla, California 92037

Received November 9, 1992

Abstract: Full details of a concise total synthesis of RA-VII (1) and deoxybouvardin (2) are described based on the implementation of an effective intramolecular Ullmann reaction as the key macrocyclization reaction in the preparation of the elusive 14-membered cycloisodityrosine subunit (33) of the bicyclic hexapeptides. Subsequent coupling of 34 to tetrapeptide 17 and macrocyclization with C2-N3 amide bond formation provided 1 and 2. In efforts that address the key structural and conformational features of the agents that contribute to their antitumor activity, N²⁹-desmethyl-RA-VII was prepared and its chemical, conformational, and preliminary biological properties are detailed. The comparable conformational features of N²⁹-desmethyl-RA-VII and RA-VII including a characteristic cis C³⁰-N²⁹ amide bond suggest that the tetrapeptide housed within the 18-membered ring induces the 14-membered cycloisodityrosine to adopt a conformation possessing an inherently disfavored cis secondary or tertiary amide. Moreover, in contrast to prior suppositions in which the rigid 14-membered ring of N-methylcycloisodityrosine has been suggested to serve the functional role of inducing a rigid, normally inaccessible conformation within the biologically relevant p-Ala-Ala-N-Me-Tyr-(OMe)-Ala tetrapeptide, experimental studies demonstrating that the intrinsic activity of the agents resides within the cycloisodityrosine subunit are presented. Thus, the results of the experimental studies require a reversal of the functional roles of the subunits of the agents in which it is the tetrapeptide housed within the 18-membered ring that potentiates the inherent biological properties and alters the conformation of cycloisodityrosine.

Bouvardin (8, NSC 259968) and deoxybouvardin (2), bicyclic hexapeptides isolated from Bouvardia ternifolia (Rubiacea) and unambiguously identified by single-crystal X-ray structure analysis (bouvardin)1 and chemical correlation (deoxybouvardin),1 constitute the initial members of a growing class of potent antitumor antibiotics including RA-I-RA-VII (1-7)2-7 (Chart I). Studies of the antitumor properties of RA-VII revealed efficacious activity in a number of animal tumor models including the demonstration of complete cures in the solid-tumor colon adenocarcinoma 38.8 Bouvardin and RA-VII have been shown to inhibit protein synthesis⁸⁻¹⁰ through eukaryotic 80S ribosomal binding, 11 resulting in the inhibition of amino acyl-tRNA binding and peptidyl-tRNA translocation, and this is presently

* Address correspondence to Dale L. Boger, Department of Chemistry, The Scripps Research Institute, 10666 North Torrey Pines Road, La Jolla, CA 92037

(1) Jolad, S. D.; Hoffmann, J. J.; Torrance, S. J.; Wiedhopf, R. M.; Cole, J. R.; Arora, S. K.; Bates, R. B.; Gargiulo, R. L.; Kriek, G. R. J. Am. Chem. Soc. 1977, 99, 8040. Bates, R. B.; Cole, J. R.; Hoffmann, J. J.; Kriek, G. R.; Linz, G. S.; Torrance, S. J. J. Am. Chem. Soc. 1983, 105, 1343

(2) Itokawa, H.; Takeya, K.; Mori, N.; Sonobe, T.; Mihashi, S.; Hamanaka, T. Chem. Pharm. Bull. 1986, 34, 3762.

(3) Itokawa, H.; Takeya, K.; Mihara, K.; Mori, N.; Hamanaka, T.; Sonobe, T.; Iitaka, Y. Chem. Pharm. Bull. 1983, 31, 1424.

(4) Itokawa, H.; Takeya, K.; Mori, N.; Kidokoro, S.; Yamamoto, H. Planta Med. 1984, 51, 313.

(5) Itokawa, H.; Takeya, K.; Mori, N.; Sonobe, T.; Serisawa, N.; Hamanaka, T.; Mihashi, S. Chem. Pharm. Bull. 1984, 32, 3216.

(6) Itokawa, H.; Takeya, K.; Mori, N.; Takanashi, M.; Yamamoto, H.; Sonobe, T.; Kidokoro, S. Gann 1984, 75, 929.

(7) Itokawa, H.; Takeya, K.; Mori, N.; Hamanaka, T.; Sonobe, T.; Mihara, (7) Itokawa, H.; 1akeya, K.; Mori, N.; Hamanaka, I.; Sonooe, I.; Minara, K. Chem. Pharm. Bull. 1984, 32, 284. For recent additions: (RA-IX and RA-X) Itokawa, H.; Yamamiya, T.; Morita, H.; Takeya, K. J. Chem. Soc., Perkin Trans. I 1992, 455. (RAI-III and RAI-IV) Itokawa, H.; Morita, H.; Takeya, K.; Tomioka, N.; Itai, A. Chem. Lett. 1991, 2217.
(8) Hamanaka, T.; Ohgoshi, M.; Kawahara, K.; Yamakawa, K.; Tsuruo, T.; Tsukagoshi, S. J. Pharmacobio-Dyn 1987, 10, 616. Kato, T.; Suzumura, V. T.; Laterak, S. Che, V. Autoionea, Pag. 1987, 7, 239.

Y.; Takamoto, S.; Ota, K. Anticancer Res. 1987, 7, 329.

(9) Tobey, R. A.; Orlicky, D. J.; Deaven, L. L.; Rall, L. B.; Kissane, R. J. Cancer Res. 1978, 38, 4415.

thought to be the site of action for the agent antitumor activity. Subsequent studies¹² have supported the early proposal¹ that the unusual isodityrosine-derived^{15,16} 14-membered cyclophane subunit of the agents may serve to induce a rigid, normally inaccessible conformation within the 18-membered cyclic hexapeptide that in turn constrains the biologically relevant D-Ala-Ala-N-Me-Tyr-(OMe)-Ala tetrapeptide to a biologically active conformation. However, efforts to critically examine the origin of the importance of the cycloisodityrosine subunit have been hampered by the inaccessibility of such systems. 17-21 Synthetic efforts on 1-8 have been characterized by the failure of conventional macrolactamization techniques¹⁸ or direct biaryl ether cyclization procedures including an intramolecular Ullmann reaction²⁰ and an intramolecular oxidative phenol coupling¹² to provide the elusive 14-

- (10) Johnson, R. K.; Chitnis, M. P. Proc. Am. Assoc. Cancer Res. 1978, 19, 218. Chitnis, M. P.; Alate, A. D.; Menon, R. S. Chemotherapy (Basel) 1981, 27, 126. Chitnis, M.; Menon, R.; Adwankar, M.; Satyamoorthy, K. Tumori 1985, 71, 261.
- (11) Zalacain, M.; Zaera, E.; Vazquez, D.; Jiminez, A. FEBS Lett. 1982,
- (12) Bates, R. B.; Gin, S. L.; Hassen, M. A.; Hruby, V. J.; Janda, K. D.; Kriek, G. R.; Michaud, J.-P.; Vine, D. B. Heterocycles 1984, 22, 785.
 - (13) Boger, D. L., Yohannes, D. J. Org. Chem. 1988, 53, 487.
 - (14) Boger, D. L.; Yohannes, D. Synlett 1990, 1, 33.(15) Isodityrosine: Fry, S. C. Biochem. J. 1982, 204, 449.
- (16) Cooper, J. B.; Varner, J. E. Biochem. Biophys. Res. Commun. 1983, 112, 161
- (17) Bates, R. B.; Janda, K. D. J. Org. Chem. 1982, 47, 4374
- (18) Inoue, T.; Naitoh, K.; Kosemura, S.; Umezawa, I.; Sonobe, T.; Serizawa, N.; Mori, N. Heterocycles 1983, 20, 397.
- (19) Boger, D. L.; Yohannes, D. J. Am. Chem. Soc. 1991, 113, 1427. Boger, D. L.; Yohannes, D. J. Org. Chem. 1991, 56, 1763.
- (20) Kriek, G. R. Ph.D. Dissertation, University of Arizona, Tucson, Arizona, 1980.
- (21) Feng, X.; Olsen, R. K. J. Org. Chem. 1992, 57, 5811. Hobbs, D. W.; Still, W. C. Tetrahedron Lett. 1989, 30, 5405. Justus, K.; Steglich, W. Tetrahedron Lett. 1991, 32, 5781. Pearson, A. J.; Park, J. G. J. Org. Chem. 1992, 57, 1744. Pearson, A. J.; Park, J. G.; Zhu, P. Y. J. Org. Chem. 1992,

Chart I

R1 R2 R3 R4 R5 RA-VII Me Me H н Ме Н Н RA-V deoxybouvardin 3 н н Me OH H RA-4 Н Ме н н Н RA-II 5 H Me Me OH H RA-III 6 H Me Me H OH RA-IV 7 OH Me Me H H RA-VI OHH Me H H

membered ring. Consequently, an indirect thallium trinitratepromoted two-step method for achieving the intramolecular phenol coupling has been introduced by Yamamura and co-workers, 22-25 requires the use of dichloro- and dibromophenol coupling partners, and has been employed by Inoue and co-workers in the first total synthesis of RA-VII (1) and deoxybouvardin (2) albeit with the key steps proceeding in low yields (ca. 2-5%).26,27

Herein, we provide full details of the total synthesis of RA-VII (1) and deoxybouvardin (2) based on the successful implementation of an effective intramolecular Ullmann reaction¹⁹ as the key macrocyclization reaction in the preparation of the 14membered cycloisodityrosine 33. Similarly, the synthesis of N^{29} desmethyl-RA-VII (9) is detailed and its comparative chemical, conformational, and preliminary biological properties are described in efforts that further define unexpected structural and conformational features of the agents contributing to their biological properties.

Studies on the 14-Membered Ring Macrocyclization. Important in the strategic planning was the anticipation and early demonstration²⁸ that 18-membered or 26-membered macrocyclization in route to the natural products would be productively conducted

Scheme I

with formation of a secondary amide. Of the three such sites available for macrocyclization, that conducted with closure of a hexapeptide at a D-amino acid amine terminus (C2-N3) could be anticipated to be most productive (Scheme I).29-31 The remaining key to the synthesis was the stage and manner by which the elusive 14-membered ring, cycloisodityrosine, was to be introduced. Recognizing that attempts to close the 14-membered ring on O-seco-deoxybouvardin through use of oxidative phenol coupling protocols¹² (eq 1) and that efforts to close the 14-

membered ring with C3-O2 bond formation had proven largely unsuccessful^{20,26} (eq 2 and 3), we focused on efforts to form cycloisodityrosine through C11-N10 amide bond formation.

⁽²²⁾ Nishiyama, S.; Nakamura, K.; Suzuki, Y.; Yamamura, S. Tetrahedron Lett. 1986, 27, 4481.

⁽²³⁾ Nishiyama, S.; Suzuki, Y.; Yamamura, S. Tetrahedron Lett. 1988, 20 559

⁽²⁴⁾ Nishiyama, S.; Suzuki, Y.; Yamamura, S. Tetrahedron Lett. 1989, 30, 379

⁽²⁵⁾ Evans, D. A.; Ellman, J. A.; DeVries, K. M. J. Am. Chem. Soc. 1989, 111, 8912.

⁽²⁶⁾ Inaba, T.; Umezawa, I.; Yuasa, M.; Inoue, T.; Mihashi, S.; Itokawa, H.; Ogura, K. J. Org. Chem. 1987, 52, 2957.

⁽²⁷⁾ Itokawa, H.; Inoue, T.; Umezawa, I.; Yuasa, M.; Inaba, T. Jpn. Pat. 63 05,0098; Chem. Abstr. 1989, 110, 213344s.

⁽²⁸⁾ Boger, D. L.; Yohannes, D. Org. Chem. 1987, 52, 5283.

⁽²⁹⁾ Rich, D. H.; Bhatnagar, P.; Mathiaparanam, P.; Grant, J. A.; Tam, J. P. J. Org. Chem. 1978, 43, 296.

⁽³⁰⁾ Brady, S. F.; Freidinger, R. M.; Paleveda, W. J.; Colton, C. D.; Homnick, C. F.; Whitter, W. L.; Curley, P.; Nutt, R. F.; Veber, D. F. J. Org. Chem. 1987, 52, 764.

⁽³¹⁾ Brady, S. F.; Varga, S. L.; Freidinger, R. M.; Schwenk, D. Mendlowski, M.; Holly, F. W.; Veber, D. F. J. Org. Chem. 1979, 44, 3101.

Representative of such efforts, repeated attempts to close 14a,b employing a range of macrolactamization procedures (DPPA, 30,31 EDCI, HOBt; 32 DCC; 26 pentafluorophenyl esters of ω -(Z)-amino carboxylic acids 33,34) including polymer supported reagents (polystyrene-i-PrCI; 35 polystyrene-SO₂Cl 36,37) failed to provide 24a,b and provided 15 (14–56%) as the sole cyclization product 38 (eq 4). Additional unsuccessful efforts employing carbonyldimidazole 39 or dipyridyl sulfite 40 in macrocyclizations that could proceed with initial 16-membered ring formation and subsequent collapse of an intermediate anhydride to the 14-membered ring (-CO₂, -SO₂) provided convincing evidence that the direct closure of the 14-membered ring with N¹⁰-C¹¹ bond formation may not be successful in our efforts.

Concurrent with these studies, we examined the potential of ring closure within the preformed 26-membered ring in hopes that the subsequent 14-membered ring cyclization may benefit from the entropic assistance of the transannular cyclization (Scheme II). Tetrapeptide 17²⁸ was coupled with 16⁴¹ to provide the linear peptide 18. Sequential deprotection of the carboxy and amine termini of 18 provided 19 which cleanly cyclized to the 26-membered ring upon exposure to diphenyl phosphorazidate (DPPA).³¹ This clean pentultimate cyclization reaction to provide 20 proceeded in a manner comparable to that disclosed for a related 26-membered macrocyclization²⁸ and may benefit from ring closure at a D-amino acid terminus.^{29,30} Deprotection of 20

(39) Goldschmidt, S.; Wick, M. In *The Peptides*; Schröder, E., Lübke, K., Ed.; Academic Press: New York, 1965; Vol. 1, pp 129-130.

and efforts to close the elusive 14-membered ring with transannular C^{30} - N^{29} amide bond formation (DPPA, 0 °C) failed to provide deoxybouvardin (2).

Convinced that attempts to close the 14-membered ring with C¹¹-N¹⁰ amide bond formation may not be implemented successfully in our hands, we elected to reexamine the C³-O² and C¹-O² Ullmann macrocyclization reactions. On the basis of observations made on related intermolecular Ullmann reactions of functionalized tyrosine derivatives, 42 the C1-O2 closure could be anticipated to be more facile than C³-O² bond formation as a consequence of the decelerating effect of the electron-donating substituent ortho to the aryl iodide necessarily present in a C³-O² Ullmann closure. Consistent with prior observations, 17-20 attempts to close the C3-O2 bond through Ullmann condensation of 11a derived from the commercially available 3-iodo-L-tyrosine and L-tyrosine have proven unsuccessful in our efforts to date⁴³ (eq 2). In sharp contrast, the intramolecular Ullmann reaction with C1-O2 bond formation proved synthetically viable for direct formation of the 14-membered diaryl ethers. Summarized in Table I are optimized results from the study of the macrocyclization of 23a-f. Full details of this study have been described and routine macrocyclization conversions of 45-60% were realized under moderately dilute reaction conditions (0.004 M) with a full range of substrates including those bearing an alkoxy or hydroxy substituent ortho to the participating phenol.¹⁹ The racemization of substrate 24f observed in pyridine was suppressed with reactions conducted in collidine or dioxane. In addition to the improved conversions available through use of this procedure, the Ullmann reaction permits the use of readily available amino acids and directly provides the appropriately functionalized diaryl ethers without resorting to the use of the less accessible dichloroor dibromophenols. With the viability of the key Ullmann macrocyclization established and modifications that effectively address potential substrate racemization in hand, its application in the total synthesis of 1 and 2 was pursued.

 ⁽³²⁾ Olsen, R. K.; Apparao, S.; Bhat, K. L. J. Org. Chem. 1986, 51, 3079.
 (33) Lagarias, J. C.; Houghten, R. A.; Rapoport, H. J. Am. Chem. Soc. 1978, 100, 8202.

⁽³⁴⁾ Schmidt, U.; Lieberknecht, A.; Griesser, H.; Talbiersky, J. J. Org. Chem. 1982, 47, 3261.

⁽³⁵⁾ Weinshenker, N. M.; Shen, C.-M. Tetrahedron Lett. 1972, 32, 3285.

⁽³⁶⁾ Patchornick, A.; Rubenstein, M. Tetrahedron Lett. 1972, 28, 2881.

⁽³⁷⁾ Patchornick, A. Nouv. J. Chim. 1982, 639.

⁽³⁸⁾ For 15: ¹H NMR (pyridine- d_5 , 300 MHz) δ 8.48 (b s, 2 H, NH), 7.50–6.88 (m, 16 H, ArH), 3.55 (dd, 4 H, J = 6.8, 12.9 Hz, CH₂NH), 3.05 (t, 4 H, J = 6.4 Hz, CH₂Ar), 2.75 (t, 4 H, J = 6.8 Hz, CH₂Ar), 2.55 (t, 4 H, J = 6.4 Hz, CH₂CON); IR (neat) 3338, 3055, 2956, 2931, 2868, 1642, 1605, 1586, 1538, 1508, 1485, 1442, 1420, 1359, 1253, 1218, 1173, 1142, 1109, 1077, 1049, 1014, 969, 911, 830 cm⁻¹; EIMS m/e (relative intensity) 534 (M⁺, 5), 267 (base); CIMS (isobutane) m/e 535 (M⁺ + H, 33), 534 (M⁺, base). For related observations with a closely related 15-membered biaryl ether lactone, see ref 51 and: Justus, K.; Steglich, W. Tetrahedron Lett. 1991, 32, 5781. Deshpande, V. H.; Gokhale, N. J. Tetrahedron Lett. 1992, 33, 4213.

⁽⁴⁰⁾ Kim, S.; Yi, K. Y.; Namkung, J.-Y. Heterocycles 1989, 29, 1237. (41) Compound 16 was prepared following the method detailed in Scheme VII of ref 42. For 16: 1 H NMR (DMSO- d_6 , 300 MHz) δ 7.33 (b s, 10 H, two PhH), 7.37–7.20 (m, 2 H, ArH), 7.09 (d, 2 H, J = 8 Hz, C^{3} - and C^{6} -H), 5.11 (s, 2 H, PhCH₂O), 5.05 (s, 2 H, PhCH₂O), 4.64 (m, 1 H, CH₂CHN), 4.38 (m, 2 H, CPCH₂CH₂CH₂), 4.32 (m, 1 H, CH₂CHN), 3.64 (s, 3 H, OCH₃), 3.18 (s, 3 H, NCH₃), 3.09–2.72 (m, 4 H, two CHCH₂Ar), 2.80 (b s, 3 H, NCH₃), 1.01 (t, 2 H, J = 6 Hz, CH₂Si), 0.06 (s, 9 H, Si(CH₃)₃); IR (neat) ν_{max} 3680, 2950, 1734, 1718, 1700, 1654, 1610, 1560, 1501, 1390, 1274, 1172, 850, 737 cm⁻¹; CIMS (isobutane) m/e 641 (M⁺ + H, base); CIHRMS m/e 641.6918 (C₃₇H₄₀N₂O₈ requires 641.6914).

⁽⁴²⁾ Boger, D. L.; Yohannes, D. J. Org. Chem. 1990, 55, 6000. Boger, D. L.; Yohannes, D. Tetrahedron Lett. 1989, 30, 2053. Boger, D. L.; Yohannes, D. J. Org. Chem. 1989, 54, 2498. Boger, D. L.; Yohannes, D. Tetrahedron Lett. 1989, 30, 5061.

⁽⁴³⁾ Boger, D. L.; Yohannes, D. Unpublished observations.

Scheme IIa

^a (a) 2.0 equiv of 17, 2.0 equiv of EDCI, 2.0 equiv of HOBt-H₂O, DMF, 25 °C, 12 h, 52%. (b) 1.5 equiv of n-Bu₄NF, THF, 25 °C, 3 h; 3.0 M HC1/EtOAc, 25 °C, 1 h, 98%. (c) 1.5 equiv of DPPA, 5.0 equiv of NaHCO₃, DMF, 0 °C, 72 h, 56%. (d) 2.0 equiv of LiOH·H₂O, THF/MeOH/H₂O (3:1:1), 25 °C, 2 h, 88%. (e) 0.1 wt equiv of 10% Pd/C, 1 atm of H₂, CH₃OH, 25 °C, 6 h, 98%. (f) 1.5 equiv of DPPA, 5.0 equiv of NaHCO3, DMF, 0 °C, 72 h.

Table I

	\mathbf{R}^{1}	R ²	\mathbb{R}^3	solvent	yield	(%)
23a 23b 23c 23c 23d 23e 23f 23f	H H OCH ₃ OCH ₃ OH OCH ₃	H CH ₃ H CH ₃ H H	H H H CO ₂ CH ₃ CO ₂ CH ₃	pyridine pyridine pyridine pyridine pyridine pyridine dioxane	24a 24b 24c 24d 24e 24f 24f	58 49 46 45 51 51 31
23f	OCH₃ OCH₃	Н	CO ₂ CH ₃	collidine	24f	50

Total Synthesis of RA-VII (1) and Deoxybouvardin (2). Singlestep O- and N-methylation44 of N-CBZ-3-acetyl-L-tyrosine methyl ester (25)45 followed by Baeyer-Villiger oxidation and acidcatalyzed methanolysis of the resulting acetate provided the selectively protected N-methyl-L-DOPA derivative 28 (Scheme

Scheme IIIa

^a (a) 2.2 equiv of NaH, 3.5 equiv of MeI, THF/DMF (10:1), 85 °C, 6 h, 89%. (b) 2.0 equiv of mCPBA, CH₂Cl₂, 40 °C, 24 h. (c) 1.0 equiv of HCl, MeOH, 25 °C, 3 h, 91%. (d) 0.1 wt equiv of 10% Pd/C, 1 atm of H₂, CH₃OH, 25 °C, 6 h, 97%. (e) 1.1 equiv of NaH, 1.2 equiv of MeI, DMF, 0-25 °C, 3 h; 1.0 equiv of LiOH·H₂O, THF/MeOH/H₂O (3: 1:1), 25 °C, 3 h, 80%. (f) 1.4 equiv of 29, 1.0 equiv of EDCI, 1.0 equiv of HOBt-H₂O, DMF, 25 °C, 16 h, 69%. (g) 2.2 equiv of NaH, 1.0 equiv of CH₃I, DMF, 0-25 °C, 6 h, 85%. (h) 1.4 equiv of **29**, 1.0 equiv of EDCI, 1.0 equiv of HOBt·H₂O, DMF, 25 °C, 16 h, 67%. (i) 2.0 equiv of NaH, 10.0 equiv of CuBr-SMe2, collidine, 130 °C, 8 h, 24-30% for 33a, 22% for 33b. (j) 0.1 wt equiv of 10% Pd/C, 1 atm of H_2 , CH_3OH , 25 °C, 6 h, 98%. (k) 3.0 M HCl/EtOAc, 25 °C, 1 h, 97%. (1) 2.0 equiv of 17, 2.0 equiv of EDCI, 2.0 equiv of HOBt-H₂O, DMF, 25 °C, 16 h, 53%. (m) 3.0 equiv of LiOH·H₂O, THF/MeOH/H₂O (3:1:1), 25 °C, 2 h. (n) 3.0 M HC1/EtOAc, 25 °C, 1 h, 92% from 33. (o) 1.5 equiv of DPPA, 5 equiv of NaHCO₃, DMF, 0 °C, 72 h, 58%. (p) 2.0 equiv of BBr₃, CH₂Cl₂, -78 to 0 °C, 3 h, 57%.

R2=H·HCI

5 37

R1=H

III). Catalytic hydrogenolysis of 28 served to remove the CBZ protecting group, and coupling of the resultant amine 29 with N-CBZ-N-methyl-4-iodo-L-phenylalanine (31a) provided 32a. Subjection of 32a to the conditions for effecting the strategic intramolecular Ullmann condensation reaction with macrocyclization provided 33a (30%) without detectable evidence of racemization. Comparable to the efforts to prepare 32a, coupling of N-BOC-N-methyl-4-iodo-L-phenylalanine (31b) with 29 and subjection of 32b to the conditions of the Ullmann reaction provided 33b in slightly lower conversions.

⁽⁴⁴⁾ Coggins, J. R.; Benoiton, N. L. Can. J. Chem. 1971, 49, 1968.
(45) Boger, D. L.; Yohannes, D. J. Org. Chem. 1987, 52, 5283.

Table II

agent	(conformation) ^a	relative energy ^b (kcal/mol)	coupling constants (Hz) (calculated or experimental)
			C9-H; C12-H
24b	(X-ray, trans)		
	(1, trans)	0.0	
	(2, trans)	1.2	
	(3, cis)	3.0	
33a	(experimental, trans)d		2.2, 11.9; 4.7, 11.7
	(1, trans)	0.0	2.2, 11.7; 4.1, 11.7
	(2, trans)	1.1	
	(3, cis)	2.5	
24a	(1, trans)	0.0	
	(2, trans)	2.6	
	(3, cis)	4.7	
41	(experimental, trans) ^d		1.3, 10.8, 8.1; 2, 12
	(1, trans)	0.0	2.1, 10.9, 8.5; 2.2, 11.6
	(2, trans)	0.1	
	(10, cis)	5.5	
			C¹-H; C¹6-H
8	(X-ray, cis)		2.4, 11.8; 1.2
	(experimental, cis)		3, 10.8; 1.8
	(1, cis)		2.0, 11.6; 2.1
1-2	(experimental, cis)		3.9, 11.8; 3.2, 11.4
	(1, cis)	0.0	1.8, 11.5; 2.1, 11.5
	(2, trans)	3.0	1.8, 11.5; 4.7, 11.4
9	(experimental, cis)		3.6, 10.4, 8, 3.2, 11.4
	(1, cis)	0.0	2.1, 11.7, -, 2.3, 11.6
	(2, trans)	2.3g	1.6, 11.3, 5.5; 4.1, 11.7

^a Trans or cis C^{11} - N^{10} (24, 33, 41) or C^{30} - N^{29} (1-2, 8-9) amide bond. b MacroModel, OPLSA force field. c Reference 19. d 2D H1-H1 NOESY NMR confirmed the trans C11-N10 amide, see text. e Reference 1. f 2D H'-H' NOESY NMR confirmed the cis C³⁰-N²⁹ amide, see text. g A slightly lower energy (relative E = 1.5 kcal) conformation possessing a trans amide and significantly altered tetrapeptide conformation was located in the exhaustive conformational search, see ref 56.

In contrast to the natural products but consistent with expectations based on a conformational analysis, 33a,b adopt a rigid solution conformation possessing a trans C11-N10 amide bond. A conformational search of 33a was conducted in which the global and close, low-lying minima (≤5 kcal) were located by use-directed Monte Carlo sampling of two starting conformations (cis and trans amides) with random variations (0-180°) in two to four of the available tortional angles excluding those originating in the aryl rings (MacroModel, OPLSA force field).46,47 The search revealed a single, lowest energy conformation for 33a which possessed a trans C11-N10 amide bond that was greater than 1.1 kcal lower in energy than any other located conformation and 2.5 kcal lower in energy than a conformation possessing a cis amide bond (Table II). The calculated coupling constants for the C9 and C12 hydrogens in this lowest energy conformation are 11.7, 2.2 Hz and 11.7, 4.1 Hz, respectively, and match the experimentally measured values of 11.9, 2.2 Hz and 11.7, 4.7 Hz. Unambiguous confirmation that 33a adopts a solution conformation that possesses a trans amide was derived from 2D 1H-1H NOESY NMR. Strong NOE crosspeaks were observed for C9-H/N-Me and C12-H/N-Me and are uniquely diagnostic of the trans amide stereochemistry. Similarly, a C9-H/C¹²-H NOE crosspeak was not observed and would be uniquely diagnostic of the cis amide stereochemistry. Further supporting evidence that cycloisodityrosine and related agents exist in a conformation possessing a trans C11-N10 N-methyl amide came from the single-crystal X-ray analysis of 24b. 19 The X-ray structure of 24b possesses a trans N-methyl amide and a backbone conformation identical to the lowest energy conformations located for 24b (RMS = 0.17 Å) and 33a (RMS = 0.38 Å) in our conformational searches.

C12 Amine deprotection through CBZ hydrogenolysis and coupling of 34 with tetrapeptide 17²⁸ provided 35. Sequential methyl ester hydrolysis, N-BOC deprotection, and diphenyl phosphorazidate promoted macrocyclization with C2-N3 amide bond formation strategically conducted at a D-amino acid amine terminus under the improved reaction conditions³⁰ provided RA-VII [1, $[\alpha]^{22}D$ -222° (c 0.1, CHCl₃)] identical in all compared respects with a sample of natural material, $[\alpha]^{21}D - 229^{\circ}$ (c 0.1, CHCl₃).⁴⁸ Selective C²⁴ methyl ether removal provided deoxybouvardin [2, $[\alpha]^{23}$ _D -219° (c 0.05, CHCl₃)] identical in all compared respects to a sample of natural material, $[\alpha]^{21}$ _D -225° (c 0.3, CHCl₃).49

Synthesis of N^{29} -Desmethyl-RA-VII (9). In efforts to assess the importance of the N-methyl cis amide bond central to the 14-membered ring, N²⁹-desmethyl-RA-VII (9) was prepared in a similar sequence relying on the Ullmann macrocyclization reaction for formation of the 14-membered ring. O-Methylation of N-CBZ-3-acetyl-L-tyrosine methyl ester followed by Baeyer-Villiger oxidation and subsequent methanolysis of the resulting acetate provided O4-methyl-N-CBZ-L-DOPA methyl ester (38). Catalytic hydrogenolysis of 38 and coupling of the resultant amine 39 with N-BOC-N-methyl-4-iodophenylalanine (31b) provided 40 (Scheme IV). Subjection of 40 to the conditions for effecting the intramolecular Ullmann reaction provided 41 (30-39%) and optimal results in initial studies were obtained employing methylcopper^{50,51} to stoichiometrically generate the cuprous phenoxide. Given the importance of the Ullmann macrocyclization and its unique success in providing the 14-membered biaryl ring system, we elected to examine the conversion of 40 to 41 in detail. In these studies, we have observed that the reaction reached an optimum conversion of 30-40% and that extending the reaction time to insure complete consumption of the starting material did not improve the yield. Further extended reaction times led to diminished yields indicating the consumption of product competitive with its generation. Key to the optimum yields recorded were the use of rigorously and freshly dried collidine, purified CuBr-SMe₂ complex, and careful degassing of the reaction solvent immediately prior to the conduct of the reaction. Because the dilute reaction conditions require the use of considerable solvent, the former and latter precautions may prove to be the most critical. Under such conditions, the reaction may be conducted conveniently with NaH/CuBr-SMe₂ (2 equiv/10 equiv) to provide 41 in 30-40%. Two additional reaction byproducts, 42 and 46, could be isolated from the reaction mixtures in variable amounts, and both proved to be derived from the primary cyclization product. The first of the two reaction byproducts, amine 42, could be eliminated by simply avoiding acidic conditions (10% aqueous HCl) generally employed to remove collidine from the reaction products in the course of the workup. The second byproduct 46 (5-20%) is derived from intramolecular N-acylation of the N¹⁰-C11 amide by the C12 tert-butyl carbamate and proved to be a

comparison samples of naturally occurring deoxybouvardin. (50) Whitesides, G. M.; Sadowski, J. S.; Liburn, J. J. Am. Chem. Soc. 1974, 96, 2829

(51) Boger, D. L.; Sakya, S. M.; Yohannes, D. J. Org. Chem. 1991, 56, 4204. Boger, D. L.; Nomoto, Y.; Teegarden, B. R. J. Org. Chem., in press.

⁽⁴⁶⁾ Still, W. C.; Mohamadi, F.; Richards, N. G. J.; Guida, W. C.; Lipton, M.; Liskamp, R.; Chang, G.; Hendrickson, T.; DeGunst, F.; Hasel, W. MACROMODEL; Columbia University: New York, 1990; version 2.7. (47) Chang, G.; Guida, W. C.; Still, W. C. J. Am. Chem. Soc. 1989, 111,

⁽⁴⁸⁾ Synthetic $[\alpha]^{22}$ _D -222° $(c = 0.1, CHCl_3); R_f 0.23$ (48:50:2 pentane/ $CH_2Cl_2/MeOH)$] and natural RA-VII [[α]²¹D -229° ($c = 0.1, CHCl_3$);³ 0.23 (48:50:2 pentane/CH₂Cl₂/MeOH)] proved indistinguishable by ¹H NMR (CDCl₃, 300 MHz), ¹³C APT (CDCl₃, 75 MHz), IR (KBr), and EIMS. We thank Dr. Inaba of Tobishi Pharmaceutical Co., Ltd., Japan, for providing a generous sample of naturally occurring RA-VII and copies of spectra ('H NMR, 200 MHz)

⁽⁴⁹⁾ Synthetic $[\alpha]^{22} - 219^{\circ} (c = 0.05, CHCl_3); R_f = 0.16 (48:50:2 pentane/$ CH₂Cl₂/MeOH)] and natural deoxybouvardin $[[\alpha]^{22}_D - 225^{\circ}$ (c = 0.03, CHCl₃); R/0.16 (48:50:2 pentane/CH₂Cl₂/MeOH)]³ proved indistinguishable by ¹H NMR (CDCl₃, 300 MHz), ¹³C APT (CDCl₃, 75 MHz), IR (KBr), and EIMS. We thank Professor J. Hoffmann of the University of Arizona and Dr. Inaba of Tobishi Pharmaceutical Co., Ltd., Japan, for providing authentic

Scheme IVa

^a (a) 0.1 wt equiv of 10% Pd/C, 1 atm of H₂, CH₃OH, 25 °C, 6 h, 99%. (b) 1.0 equiv of **31b**, 1.0 equiv of EDCI, 1.0 equiv of HOBt, DMF, 25 °C, 12 h, 92%. (c) 2.0 equiv of CH₃Cu, collidine, 130 °C, 9 h, 36%, or 2.0 equiv of NaH, 10 equiv of CuBr−SMe₂, collidine, 130 °C, 9 h, 30−39%. (d) 3.0 M HCl/EtOAc, 25 °C, 1 h, 100%. (e) 2.0 equiv of 17, 3.0 equiv of EDCI, 3.0 equiv of HOBt, 8.0 equiv of NaHCO₃, DMF, 25 °C, 48 h, 71%. (f) 3 equiv of LiOH, 11 equiv of H₂O₂, THF/H₂O (3:1), 25 °C, 6 h. (g) 3.0 M HCl/EtOAc, 25 °C, 1.5 h, 97%. (h) 1.5 equiv of DPPA, 5.0 equiv of NaHCO₃, DMF, 0 °C, 72 h.

robust material (eq 5).^{52,53} In general, attempts to avoid the generation of 46 through use of less basic reaction conditions (2 equiv of NaH, 10 equiv of CuBr-SMe₂, 0.004 M dioxane, 8 equiv of HMPA, reflux, 18 h, 10% 41) provided predominantly recovered 40.

Similar to 33, 41 was found to possess a solution conformation with a trans C¹¹-N¹⁰ amide bond. A conformational search of 41 was conducted as described for 33 in which the global and

(52) For 46: pale-yellow oil which solidified upon standing; mp 143–146 °C; ¹H NMR (CDCl₃, 250 MHz) δ 7.21 (dd, 1 H, J = 2.2, 8.4 Hz, Cl⁵-H), 7.12 (dd, 1 H, J = 2.4, 8.2 Hz, Cl⁸-H), 7.02 (dd, 1 H, J = 2.1, 8.3 Hz, Cl⁶-H), 6.91 (dd, 1 H, J = 2.4, 8.4 Hz, Cl⁷-H), 6.74 (d, 1 H, J = 8.3 Hz, Cl⁶-H), 4.66 (dd, 1 H, J = 1.9, 8.2 Hz, Cl⁶-H), 4.79 (d, 1 H, J = 1.8 Hz, Cl⁹-H), 4.44 (dd, 1 H, J = 1.7, 12.0 Hz, Cl²-H), 4.18 (t, 1 H, J = 3.4 Hz, Cl⁹-H), 4.03 (dd, 1 H, J = 5.2, 16.7 Hz, Cl³-H), 3.90 (s, 3 H, ArOCH₃), 3.69 (s, 3 H, CO₂CH₃), 3.22 (t, 2 H, J = 3.8 Hz, Cl⁸-H), 3.10 (s, 3 H, NCH₃), 2.98 (dd, 1 H, J = 1.7, 16.3 Hz, Cl³-H); ¹³C NMR (CDCl₃, 62.5 MHz) δ 172.1, 169.8, 158.7, 147.3, 133.4, 130.7, 130.6, 129.7, 124.7, 124.2, 121.9, 115.8, 111.6, 63.0, 56.1, 55.4, 53.2, 33.2, 30.2, 28.0; IR (neat) ν_{max} 2890, 2880, 1744, 1715, 1518, 1438, 1405, 1395, 1263, 1219, 1208, 1130 cm⁻¹; FABHRMS (NBA) m/e 410.1474 (C₂₂H₂₂N₂O₆ requires 410.1478).

(53) Compound 46 proved to be chemically unreactive and treatment with 3.25 M HCl/EtOAc (25 °C, 24 h), 8 M HCl/CH₃OH (25 °C, 72 h), and aqueous HCl/THF solutions provided no reaction. Treatment with NaOMe (2 equiv) in MeOH (25 °C, 24 h) provided the two regioisomeric five-membered-ring cleavage products.

close, low-lying minima were located and revealed two, nearly indistinguishable low-energy conformations greater than 0.7 kcal lower in energy than other located conformations and 5.5 kcal lower in energy than a conformation possessing a cis C¹¹-N¹⁰ amide (Table II). The two closely related low-energy conformations possess a trans C¹¹-N¹⁰ amide bond and the calculated C⁹ and C¹² coupling constants for the lowest energy conformation match the experimentally measured values. Unambiguous confirmation that 41 adopts a solution conformation possessing a trans amide was derived from 2D ¹H-¹H NMR in which strong NOE crosspeaks were observed for C⁹-H/N-H and C¹²-H/N-H diagnostic of a trans amide conformation and from the absence of a C⁹-H/C¹²-H NOE crosspeak diagnostic of a cis amide conformation.

Amine deprotection and coupling of 42 with tetrapeptide 17^{28} provided 43. Efforts to conduct the methyl ester hydrolysis of 43 under standard conditions (1–3 equiv of LiOH, THF/MeOH/ H_2O , 25 °C) resulted in facile C^{14} – N^{15} amide bond hydrolysis presumably the result of C^{30} – N^{29} amide deprotonation and intramolecular C^{14} O-acylation with C^{14} – N^{15} amide cleavage (eq 6). Consequently, hydrolysis of 43 was initially accomplished under the conditions of Fischer deesterification or more conveniently with the use of lithium peroxide and provided 44. BOC deprotection and subsequent diphenyl phosphorazidate promoted macrocyclization with C^2 – N^3 amide bond formation provided 9, $[\alpha]^{22}$ D –202° (c 0.5, CHCl₃).

Comparative Conformational and Biological Properties. The X-ray crystal structure of bouvardin (8) revealed that the three secondary amides as well as the C8-N9 and C14-N15 N-methyl amides possess the trans stereochemistry while the $C^{30}-N^{29}$ N-methyl amide central to the 14-membered ring possesses a cis amide conformation in an unusual type VI \(\beta\)-turn. 54 The X-ray structure conformation of 8 has been unambiguously assigned to the single, predominant (ca. 85-95%) solution conformation of 8, and the diagnostic ¹H NMR coupling constants within the rigid 14-membered ring match those calculated from the X-ray crystal structure (Table II). A second, spectroscopically detectable conformation of 8 (ca. 5-15%) is observed and has been attributed to an additional conformation within the flexible portion of the 18-membered ring (cis C8-N9 or C14-N5 N-methyl amide) rather than the rigid 14-membered ring.1 Similar observations have been made with 1-7.55 More diagnostic of the solution

(54) Toniolo, C. CRC Crit. Rev. Biochem. 1980, 8, 1. Vitoux, B.; Aubry, A.; Cung, M. T.; Marraud, M. Int. J. Pept. Protein Res. 1986, 27, 617. (55) Morita, H.; Kondo, K.; Hitotsuyanagi, Y.; Takeya, K.; Itokawa, H.; Tomioka, N.; Itai, A.; Iitaka, Y. Tetrahedron 1991, 47, 2757. Itokawa, H.; Morita, H.; Takeya, K.; Tomioka, N.; Itai, A.; Iitaka, Y. Tetrahedron 1991, 47, 7007. Itokawa, H.; Yamamiya, T.; Morita, H.; Takeya, K. J. Chem. Soc., Perkin Trans. I 1992, 455. Itokawa, H.; Saitou, K.; Morita, H.; Takeya, K. Chem. Pharm. Bull. 1991, 39, 2161.

Figure 1. Newman projections of the $C^1-N^{29}-C^{30}-C^{16}$ cis and trans amides of 1 and 9 illustrating the origin of the diagnostic $^1H-^1H$ NOEs. Distances were taken from low-energy conformations of 1 and 9 possessing the cis and trans amide stereochemistry (MacroModel, OPLSA force field).

structure of the agents is a characteristic, strong NOE observed between C1-H and C16-H. Within the X-ray crystal structure of bouvardin and in the low-energy conformations of 1 and 2, the C1-H/C16-H proton-proton distance is only 1.7-1.8 Å. Accordingly, the $C^1\text{-H}/C^{16}\text{-H}$ crosspeak in the 2D $^1\text{H}-^1\text{H}$ NOESY NMR spectrum of 1 constitutes the strongest observed NOE crosspeak. Expectedly absent are NOE crosspeaks between C1-H or C16-H and N²⁹-CH₃ that would be present if 1 adopted a trans C³⁰-N²⁹ amide bond. In the conformation of 1 possessing a trans C^{30} - N^{29} amide, the C¹-H/C¹⁶-H proton-proton distance is approximately 4.9 Å and the methyl group of N²⁹-CH₃ lies directly between the two hydrogens with C1-H and C16-H/N29-CH3 proton-proton distances of 1.8-1.95 Å (Figure 1). Thus, the presence of a strong C1-H/C16-H NOE crosspeak in the 2D 1H-1H NOESY NMR spectrum is uniquely diagnostic of an agent in a solution conformation possessing a cis N²⁹-C³⁰ amide bond while the presence of strong C^1 -H/N²⁹-R and C^{16} -H/N²⁹-R (R = CH₃ or H) NOE crosspeaks may be considered uniquely diagnostic of an agent in a solution conformation possessing a trans N²⁹-C³⁰ amide bond. In contrast to the simple 14-membered ring of the cycloisodityrosine derivatives 24a-f, 33, and 41, which exist in a conformation possessing a trans N-methyl or NH amide, the 14-membered rings of 1-8 have adopted a conformation possessing the inherently disfavored C^{30} - N^{29} cis N-methyl amide bond.

Extensive and repetitive conformational searches⁵⁶ of 1 and 2 have provided results consistent with the experimental observations. The lowest energy conformation located for the agents possesses the X-ray structure conformation. In addition, the results of the conformational searches have suggested that the C^{14} - N^{15} N-methyl amide as well as the three secondary amides will exist predominantly or exclusively in the trans conformation, that conformations possessing the cis and trans C^8 - N^9 N-methyl amides may possess comparable energies, and that significant differences exist in the relative stabilities of the experimentally preferred cis versus trans C^{30} - N^{29} N-methyl amide bond. For the natural products 1 and 2, conformations possessing the cis C^{30} - N^{29} N-methyl amide bond proved to be substantially more stable than the comparable conformation located possessing a trans C^{30} - N^{29} amide, $\Delta E = \geq 3.0$ kcal.

The examination of the conformational properties of 9 (N^{29} -desmethyl-RA-VII) was anticipated to more clearly define the inherent N^{29} - C^{30} amide stereochemical preference and its

Table III. ¹H NMR Chemical Shifts (500 MHz, CDCl₃, ppm) and Coupling Constants (Hz, in Parentheses) for 1 and 9^a

signal	1	9
Ala ^{4β}	1.12 d (6.6)	1.11 d (6.6)
*Ala ^{1β}	1.30 d (6.9)	1.30 d (6.9)
*Ala $^{2\beta}$	1.35 d (6.9)	1.34 d (6.9)
Tyr ^{5β a}	2.63 dd (2.9, 11.4)	2.63 dd (3, 11)
Tyr ⁶ -NMe	2.69 s	
Tyr ³ -NMe	2.84 s	2.83 s
Tyr ^{6β} a	2.98 dd (19, 3.9)	3.01 dd (19, 4.1)
Туг ^{6β b}	3.14 dd (19, 11.8)	3.17 (dd, 19, 11)
Tyr ⁵ -NMe	3.13 s	3.13 s
Tyr ^{3β}	3.36 m (2 H)	3.35 m (2 H)
$Tyr^{3\alpha}$	3.59 dd (5.4, 10.2)	3.60 dd (5, 11)
Tyr ^{5β b}	3.67 dd (8.5, 11.3)	3.67 dd (8, 11)
Tyr ³ - <i>0</i> -Me	3.79 s	3.78 s
Tyr ⁶ -O-Me	3.93 s	3.93 s
Tyr ^{6δ b}	4.32 d (2.2)	4.76 d (2.2)
*Ala1a	4.34 p (7)	4.32 p (7)
Tyr^{6lpha}	4.55 dd (3.9, 11.8)	4.55 ddd (3.6, 8, 10.4)
*Ala4a	4.74 p (7.2)	4.74 p (7)
*Ala $^{2\alpha}$	4.86 p (7)	4.85 p (7)
$Tyr^{5\alpha}$	5.41 dd (3.2, 11.4)	5.41 dd (3.2, 11.4)
Tyr ⁶ -NH		5.83 d (8)
*Ala²-NH	6.08 d (8.5)	6.08 d (8.5)
*Ala¹-NH	6.41 d (6.6)	6.40 d (6.6)
Tyr ^{6ð a}	6.58 dd (1.9, 8.3)	6.60 dd (2.2, 8.4)
*Ala4-NH	6.70 d (7.7)	6.70 d (8)
Tyr ⁶ a	6.80 d (8.4)	6.78 d (8.4)
Tyr36	6.83 d (8.6)	6.80 d (8.5)
Tyr⁵ • b	6.87 dd (2.4, 8.5)	6.83 dd (2, 8)
Tyr38	7.05 d (8.6)	7.02 d (8.5)
Tyr⁵€ a	7.20 dd (2.4, 8.4)	7.19 dd (2, 8)
Tvr ^{5δ b}	7.27 dd (2.3, 8.5)	7.25 dd (2, 8)
Tyr ^{5δ a}	7.42 dd (2.4, 8.4)	7.40 dd (2, 8)

^a The * represents reassignments from that presented in ref 1 based on 2D ¹H-¹H NOESY NMR.

potential origin. N²⁹-Desmethyl-RA-VII (9) and RA-VII (1) displayed remarkably similar spectroscopic properties (Tables III and IV). Like 1, 9 was found to exist predominantly in one solution conformation with the presence of a second, spectroscopically detectable conformation being observed albeit in minor amounts (ca. 5-15%). Moreover, the comparable spectroscopic behavior and relative amounts of the minor conformations detected with 1, 2, 8 (ca. 5-15%), and 9 (ca. 5-15%) including the appearance of the same perturbed signals suggest that the minor conformations are derived from an alternative conformation within the flexible portion of the 18-membered ring, i.e. cis versus trans C^8-N^9 N-methyl amide, rather than within the rigid 14-membered ring. 1,55 Pertinent to the lack of potential perturbation to the 14-membered ring within both 1 and 9, 9 exhibited coupling constants consistent with a conformation possessing a cis C30-N²⁹ amide bond. Consistent with the experimental observations, a conformational search of 9 revealed that the lowest energy conformation of 9 located possesses the cis C³⁰-N²⁹ secondary amide central to the 14-membered ring and an overall conformation comparable to that of the X-ray conformation of

Table IV. APT ¹³C NMR Chemical Shifts (75 MHz, CDCl₃, ppm) for 1 and 9

signal	1	9
Ala ^{2β} Ala ^{4β}	16.7 (o) 18.6 (o)	16.6 (o) 18.4 (o)
Ala ¹⁸	20.8 (o)	21.0 (o)
Tyr ⁶ -NMe	29.4 (o)	21.0 (0)
Tyr ⁵ -NMe	30.6 (o)	30.3 (o)
Tyr ^{3β}	32.7 (e)	32.7 (e)
Tyr ^{6β}	35.5 (e)	35.5 (e)
$Tyr^{5\beta}$	37.0 (e)	36.7 (e)
Tyr ³ -NMe	39.8 (o)	39.9 (o)
Ala ^{2α}	44.6 (o)	44.4 (o)
$Ala^{4\alpha}$	46.5 (o)	46.6 (o)
Ala ^{1α}	47.9 (o)	48.3 (o)
$Tyr^{5\alpha}$	54.3 (o)	54.1 (o)
Tyr ³ -O-Me	55.3 (o)	55.3 (o)
Tyr6-O-Me	56.2 (o)	56.1 (o)
$Tyr^{6\alpha}$	57.4 (o)	57.5 (o)
$Tvr^{3\alpha}$	68.4 (o)	68.3 (o)
Tvr ⁶ € a	112.3 (o)	112.9 (o)
Tyr ^{6δ b}	113.4 (o)	113.5 (o)
Tvr³€	114.0 (o)	114.2 (o)
Tvr ^{6δ a}	120.9 (o)	121.0 (o)
Tyr ⁵ b	124.3 (o)	124.3 (o)
Tyr ⁵ a	125.9 (o)	126.0 (o)
Tyr ⁶	128.1 (e)	128.2 (e)
Tyr³δ	130.3 (o)	130.2 (o)
$\mathrm{Tyr}^{3\gamma}$	130.7 (e)	130.5 (e)
Tyr ^{5δ a}	131.0 (o)	130.9 (o)
Tyr ^{5δ} b	132.8 (o)	132.8 (o)
Tyr ⁵	135.2 (e)	135.1 (e)
Tyr ⁶	146.5 (e)	146.6 (e)
Tyr66 b	153.1 (e)	153.2 (e)
Tyr ⁵	158.3 (e)	158.3 (e)
Tyr ³	158.4 (e)	158.5 (e)
Tyr³-CO	168.1 (e)	169.7 (e)
Tyr ⁵ -CO	169.4 (e)	169.4 (e)
Tyr ⁶ -CO	170.9 (e)	170.9 (e)
Ala ⁴ -CO	171.8 (e)	171.7 (e)
Ala ¹ -CO Ala ² -CO	172.3 (e)	172.4 (e)
AlaCO	172.6 (e)	172.6 (e)

bouvardin. Like 1 and 2, the conformations located possessing a cis C^{30} – N^{29} amide bond proved to be more stable than the comparable conformation located with a trans C^{30} – N^{29} bond although the relative stability of the cis versus trans amide was somewhat diminished, $\Delta E \ge 1.5$ kcal. Thus, in marked contrast to the simple 14-membered ring of 41 possessing a trans C^{11} – N^{10} secondary amide central to the cycloisodityrosine structure, the 14-membered cycloisodityrosine ring of 9 has adopted a preferred conformation possessing the inherently disfavored cis C^{30} – N^{29} secondary amide.

These surprising results require a reinterpretation of the origin of the conformational properties of 1–9. In contrast to the initial suggestion that the rigid 14-membered ring of cycloisodityrosine serves the scaffolding role of inducing a rigid, normally inaccessible conformation within the biologically relevant tetrapeptide housed in the 18-membered ring, 1.55 the experimental results illustrate that it is the tetrapeptide that induces a rigid, normally inaccessible conformation within the 14-membered cycloisodityrosine ring.

Moreover, but consistent with this reinterpretation of the origin of the conformational properties of the agents, 9 was found to possess potent cytotoxic activity ca. two times greater than that of the natural products, Table V. In addition, the simple cycloisodityrosine derivatives 33 and 41 exhibited potent in vitro cytotoxic activity and were found to be only 10-30 times less potent than the natural products.⁵⁷ Thus, N-methyl cycloisodityrosine possesses inherent cytotoxic activity at a level comparable

Table V. In Vitro Cytotoxic Activity

agent	IC ₅₀ (μ g/mL; L1210, B16) ^a		
1 (RA-VII)	0.002	0.003	
2 (deoxybouvardin)	0.002	0.003	
9 (N ²⁹ -desmethyl-RA-VII)	0.001	0.002	
33a	0.04	0.09	
33b	0.03	0.04	
41	0.06	0.1	
24a-f	>100		

 $^{^{}o}$ Inhibitory concentration (IC₅₀) for 50% inhibition of cell growth relative to untreated controls, L1210 leukemia and B16 melanoma cell culture assays, ref 57.

to that of the natural products and potentially constitutes the pharmacophore.⁵⁸ These observations in conjunction with those of related studies^{56,57} suggest that it is the tetrapeptide housed within the 18-membered ring that potentiates the inherent biological properties and alters the conformation of cycloisodityrosine.

Experimental Section⁵⁹

 $3-Acetyl-\textit{N,O-}dimethyl-\textit{N-}[(phenylmethoxy) carbonyl]-L-tyrosine \ Methods and the property of the proper$ yl Ester (26). A solution of 25⁴⁵ (7.34 g, 19.8 mmol) in 60 mL of THF/ DMF (10:1) was treated with CH₃I (9.83 g, 4.31 mL, 69.3 mmol, 3.5 equiv) and cooled to 0 °C before the addition of NaH (60% dispersion in mineral oil, 1.74 g, 43.5 mmol, 2.2 equiv). The reaction mixture was stirred for 10 min (25 °C) and warmed at reflux (85 °C bath) for 6 h. The cooled reaction mixture was poured over 10% aqueous HCl (60 mL) and extracted with EtOAc (100 mL). The organic phase was washed with 10% aqueous HCl (2×60 mL) and saturated aqueous NaCl (100 mL), dried (MgSO₄), and concentrated in vacuo. Flash chromatography $(SiO_2, 4 \times 20 \text{ cm}, 30\% \text{ EtOAc/hexane})$ afforded 26 (7.02 g, 7.89 g theoretical yield, 89%) as a pale-yellow oil: $[\alpha]^{22}D-49.5^{\circ}$ (c 0.37, MeOH); ¹H NMR (CDCl₃, 300 MHz) of major rotomer δ 7.58 (d, 1 H, J = 2.4Hz, C^2 -H), 7.35 (m, 5 H, PhH), 7.20 (dd, 1 H, J = 2.4, 8.4 Hz, C^6 -H), 6.87 (d, 1 H, J = 8.4 Hz, C⁵-H), 5.10 (b s, 2 H, C H_2 Ph), 4.97 (dd, 1 H, J = 5.3, 10.6 Hz), 3.90 (s, 3 H, ArOCH₃), 3.80 (s, 3 H, CO₂CH₃), 3.30 (dt, 2 H, J = 5.3, 14.6 Hz, CHC H_2), 2.84 (s, 3 H, NC H_3), 2.60 (s, 3 H, COCH₃); IR (neat) ν_{max} 3035, 2954, 1730, 1681, 1570, 1495, 1420, 1381, 1350, 1245, 1151, 1060, 1021, 818, 739 cm⁻¹; CIMS (isobutane) m/e 400 (M⁺ + H, base); EIHRMS m/e 399.1682 (C₂₂H₂₄NO₆ requires

399.1682).
3-Hydroxy-N,O-dimethyl-N-{(phenylmethoxy)carbonyl}-L-tyrosine Methyl Ester (28). A solution of 26 (1.22 g, 3.06 mmol) in 10 mL of dry CH₂Cl₂ was treated with m-chloroperbenzoic acid (mCPBA, 80-85% grade, 0.8 g, 3.7 mmol, 1.2 equiv) and warmed at 40 °C. After 12 h, an additional 0.80 equiv of mCPBA (0.52 g) was added and the reaction mixture was stirred an additional 12 h (40 °C). The cooled reaction mixture was concentrated in vacuo, dissolved in EtOAc (30 mL), washed with saturated aqueous NaHCO₃ (5 × 50 mL) and saturated aqueous NaCl (50 mL), dried (MgSO₄), and concentrated in vacuo. Crude 27 was added to a solution of methanolic HCl prepared by dropwise addition of CH₃COC1 (0.216 mL, 3.06 mmol, 1.0 equiv) to 10 mL of CH₃OH at 0 °C. The reaction mixture was stirred at 25 °C (3 h) and concentrated in vacuo. Flash chromatography (SiO₂, 3×15 cm, 30% EtOAc/hexane) afforded 28 (1.03 g, 1.14 g theoretical yield, 91%) as a clear, pale-yellow oil: $[\alpha]^{22}_{D}$ -13.8° (c 0.24, MeOH); ¹H NMR (CDCl₃, 200 MHz) mixture of two rotamers δ 7.35 (m, 5 H, PhH), 6.85-6.68 (m, 3 H, Ar-H), 5.10 and 5.05 (two s, 2 H, CH₂Ph), 4.95-4.78 (m, 1 H, CH₂CH), 3.86 (s, 3 H, ArOCH₃), 3.75 and 3.65 (two s, 3 H, CO₂CH₃), 3.44-2.95 (m, 2 H, CH_2CH), 2.82 (b s, 3 H, NCH₃); IR (neat) ν_{max} 3370, 2950, 2841, 1740, $1700, 1601, 1510, 1450, 1404, 1319, 1270, 1129, 914, 855, 764, 700 \text{ cm}^{-1};$ EIMS m/e 373 (M⁺, 5), 208 (47), 137 (32), 91 (base); CIMS (isobutane) m/e 374 (M⁺ + H, base); EIHRMS m/e 373.1529 (C₂₀H₂₃NO₆ requires 373.1525).

⁽⁵⁷⁾ Boger, D. L.; Yohannes, D.; Myers, J. B. J. Org. Chem. 1992, 57, 1319. Boger, D. L.; Myers, J. B.; Yohannes, D.; Kitos, P. A.; Suntornwat, O.; Kitos, J. C. BioMed. Chem. Lett. 1991, 1, 313.

⁽⁵⁸⁾ The structural similarity of the 14-membered biaryl subunit of RA-VII and combretastatin D1 and D2, mitotic inhibitors through tubulin binding, ⁵¹ suggested the agents may act at a tubulin-binding site. However, RA-VII exhibited no evidence of mitotic inhibition in human T222 cell cycle specificity testing. Similar observations with bouvardin have been described. ⁸ We thank Dr. H. Pearce and Dr. P. Mahn of Eli Lilly and Co. for conducting this assay.

⁽⁵⁹⁾ Chiral HPLC analysis was conducted on a Gilson Model 320 dual-pump chromatograph equipped with an ISCO V⁴ variable-wavelength absorbance detector (254 nm unless otherwise indicated) employing a J. T. Baker Bond DNBPG (covalent) chiral column.

4-Iodo-N-methyl-N-[(phenylmethoxy)carbonyl]-L-phenylalanine (31a). A solution of 30 (3.66 g, 8.34 mmol) in 40 mL of dry DMF was cooled to 0 °C and treated with NaH (60% oil dispersion, 0.367 g, 9.17 mmol, 1.1 equiv). After 5 min, CH₃I (1.41 g, 0.62 mL, 10.0 mmol, 1.2 equiv) was added and the reaction mixture was stirred at 25 °C (3 h). The reaction mixture was poured over 10% aqueous HC1 (50 mL) and extracted with EtOAc (60 mL). The EtOAc layer was washed with water (3 × 100 mL) and saturated aqueous NaCl (60 mL), dried (MgSO₄), and concentrated in vacuo. The resulting oil was dissolved in THF/MeOH/ H₂O (3:1:1, 20 mL) and was treated with LiOH-H₂O (0.350 g, 8.34 mmol, 1.0 equiv). The reaction mixture was stirred at 25 °C (3 h), poured over 10% aqueous HCl (20 mL), and extracted with EtOAc (3 × 10 mL). The combined EtOAc extracts were washed with saturated aqueous NaCl (30 mL), dried (MgSO₄), and concentrated in vacuo. Flash chromatography (SiO₂, 3 × 15 cm, 50% EtOAc/hexane) afforded 31a (2.92 g, 3.66 g theoretical yield, 80%) as a white solid: mp 100-102 °C (EtOAc, white flakes); $[\alpha]^{22}D - 3.4$ ° (c 0.125, CHCl₃); ¹H NMR (CDCl₃, 300 MHz) of major rotomer δ 7.58 (d, 2 H, J = 8 Hz, C³- and C^{5} -H), 7.37 (m, 5 H, PhH), 6.95 (d, 2 H, J = 8 Hz, C^{2} - and C^{6} -H), 5.13 $(s, 2 H, CH_2Ph), 4.86 (dd, 1 H, J = 10, 6 Hz, CHCH_2), 3.27 (dt, 2 H, CHCH_2)$ $J = 12, 6 \text{ Hz}, \text{CHC}H_2), 2.80 \text{ (s, 3 H, NCH}_3); \text{IR (KBr) } \nu_{\text{max}} 3330, 2929,$ 1718, 1670, 1616, 1559, 1540, 1517, 1470, 1395, 1369, 1163, 838, 775 cm⁻¹; EIMS m/e 439 (M⁺, 31), 424 (8), 395 (22), 312 (16), 304 (18), 91 (base); CIMS (isobutane) m/e 440 (M⁺ + H, base); EIHRMS m/e 439.2506 (C₁₈H₁₈INO₄ requires 439.2508).

3-Hydroxy-N, O-dimethyl-N-[4-iodo-N-methyl-N-[(phenylmethoxy)carbonyl]-L-phenylalanyl]-L-tyrosine Methyl Ester (32a). A solution of 28 (1.11 g, 2.97 mmol) in 10 mL of dry MeOH was treated with 10% Pd/C (0.11 g, 10% wt equiv) and stirred under an atmosphere of H_2 at 25 °C (6 h). The reaction mixture was filtered through Celite (MeOH wash), concentrated in vacuo, and dried thoroughly under vacuum to afford crude 29, which was used without purification in the following reaction. A solution of 29 (0.703 g, 2.97 mmol, 1.0 equiv) in 5 mL of dry DMF was added to a solution of 31a (0.93 g, 2.1 mmol), EDCI (0.41 g, 2.1 mmol, 1.0 equiv), and HOBt-H₂O (0.29 g, 2.1 mmol, 1.0 equiv) in 5 mL of DMF, and the resulting reaction solution was stirred at 25 °C (16 h). The reaction mixture was poured over 10% aqueous HCl (30 mL) and extracted with EtOAc (2 × 15 mL). The combined EtOAc layer was washed with 10% aqueous HCl (3 × 30 mL), saturated aqueous NaHCO₃ (3 × 30 mL), and saturated aqueous NaCl (30 mL), dried (MgSO₄), and concentrated in vacuo. Flash chromatography (SiO₂, 3 × 25 cm, 15-30% EtOAc/hexane) afforded 32a (0.966 g, 1.39 g theoretical yield, 69%) as a viscous pale-yellow oil: $[\alpha]^{22}D - 47.8^{\circ}$ (c 0.27, CHCl₃); ¹H NMR (CDCl₃, 300 MHz) δ 7.60–7.45 (m, 2 H, C²- and C⁶-H), 7.36 (b s, 5 H, PhH), 7.24 (m, 2 H, C3'- and C5'-H), 7.01-6.60 (m, 3 H, C2-, C^{5} -, and C^{6} -H), 5.20 (b s, 1 H, Ar-OH), 5.08 (m, 2 H, CH_{2} Ph), 4.95 (m, 1 H, CH₂CH), 4.79 (m, 1 H, CH₂CH), 3.80 (four s, 3 H, ArOCH₃), 3.75, 3.70, 3.69, and 3.66 (four s, 3 H total, CO₂CH₃), 3.18 (m, 2 H, CHCH₂Ar), 2.95, 2.90, 2.86, and 2.80 (four s, 3 H total, NCH₃), 2.79, 2.77, 2.75, and 2.70 (four s, 3 H total, NCH₃), 2.65-2.55 (m, 2 H, CHCH₂-Ar); IR (neat) ν_{max} 3300, 2936, 2346, 1736, 1700, 1654, 1560, 1542, 1508, 1488, 1458, 1400, 1266, 1008 cm⁻¹; CIMS (isobutane) m/e 661 $(M^+ + H)$; CIHRMS m/e 661.1398 (C₃₀H₃₃N₂O₇I requires 661.1411).

Chiral-phase HPLC analysis of 32a revealed a 95:5 ratio of diastereomers; t_R 10.2 min/11.3 min, respectively; 1.0 mL/min, 25% EtOAc/ hexane elution, 258-nm detection.

3-Hydroxy-N,O-dimethyl-N-[4-iodo-N-methyl-N-[(1,1-dimethylethoxy) carbonyl]-L-phenylalanyl]-L-tyrosine Methyl Ester (32b). The coupling of 29 and 31b was conducted as detailed for 32a to afford 32b (67%) as a yellow oil: $[\alpha]^{22}_D$ –52.0° (c 0.18, CH₃OH); ¹H NMR (CDCl₃, 300 MHz) δ 7.65–7.50 (m, 2 H, C²- and C6-H), 7.38 (b s, 5 H, PhH), 7.29 (m, 2 H, C³- and C⁵-H), 7.08–6.65 (m, 3 H, C²-, C⁵-, and C6-H), 5.20 (b s, 1 H, ArOH), 5.11 (m, 2 H, CH₂Ph), 5.02 (m, 1 H, CH₂CH), 4.80 (m, 1 H, CH₂CH), 3.86 (m, 3 H, ArOCH₃), 3.70 (m, 3 H, CO₂CH₃), 3.22 (m, 2 H, CHCH₂Ar), 2.97, 2.89, 2.88, and 2.82 (four s, 3 H total, NCH₃), 2.81, 2.77, 2.73, and 2.69 (four s, 3 H total, NCH₃), 2.67–2.55 (m, 2 H, CHCH₂Ar), 1.40 (m, 9 H, CO₂C(CH₃)₃); IR (neat) $_{max}$ 3568, 2926, 1734, 1700, 1684, 1654, 1576, 1560, 1542, 1508, 1498, 1490, 1458, 1396, 1256, 806 cm⁻¹; CIMS (isobutane) $_{m/e}$ 627 (M⁺ + H, base); CIHRMS $_{m/e}$ 627.1560 (C₂₇H₂₅N₂O₇I requires 627.1569).

Chiral-phase HPLC analysis of 32b revealed a 94:6 ratio of diaster-eomers; t_R 9.6 min/10.5 min, respectively; 1.0 mL/min, 25% EtOAc/hexane solution, 258-nm detection.

Methyl 4-Methoxy-12-[N-methyl-N-[(phenylmethoxy)carbonyl]amino]-N¹⁰-methyl-11-oxo-2-azatricyclo[12.2.2,1^{3,7}]nonadeca-3,5,7(19),14,16,-17-hexaene-9-carboxylate (33a). A solution of 32a (0.178 g, 0.268 mmol)

in 1 mL of dry collidine was added to a 0 °C suspension of NaH (60% dispersion in mineral oil, 22 mg, 0.54 mmol, 2.0 equiv) in 1 of mL dry collidine followed by the addition of CuBr-SMe2 (0.522 g, 2.68 mmol, 10.0 equiv). After 0.5 h (25 °C), the reaction mixture was diluted with collidine (70 mL) and warmed to 130 °C (bath) for 9 h. The cooled reaction mixture was poured over 10% aqueous HC1(30 mL) and extracted with EtOAc (30 mL). The EtOAc extract was washed with 10% aqueous HCl (3 \times 50 mL), saturated aqueous NH₄Cl (2 \times 30 mL), and saturated aqueous NaCl (30 mL), dried (MgSO₄), and concentrated in vacuo. Flash chromatography (SiO₂, 3 × 15 cm, 30-60% EtOAc/hexane) afforded 33a (0.04 g, 0.14 g theoretical yield, 30%) as a clear yellow oil: $[\alpha]^{22}_D$ -22.1° (c 0.12, CHCl₃); ¹H NMR (CDCl₃, 500 MHz) δ 7.48 (dd, 1 H, J = 3, 8 Hz, C^{15} - or C^{18} -H), 7.38 (m, 5 H, PhH), 7.31 (dd, 1 H, $J = 3, 8 \text{ Hz}, C^{18}$ - or C^{15} -H), 7.05 (dd, 1 H, $J = 2.4, 8.4 \text{ Hz}, C^{16}$ - or C^{17} -H), 7.03 (dd, 1 H, J = 2.4, 8.3 Hz, C^{17} - or C^{16} -H), 6.81 (d, 1 H, J= 8.3 Hz C^5 -H), 6.64 (dd, 1 H, J = 2, 8.4 Hz, C^6 -H), 5.42 (dd, 1 H, $J = 4.7, 11.7 \text{ Hz}, C^{12}\text{-H}$), 5.23 and 5.17 (two d, 1 H each, J = 12.5 Hz, CHHPh and CHHPh), 4.80 (dd, 1 H, J = 2.2, 11.9 Hz, C⁹-H), 4.74 (d, $1 \text{ H}, J = 2.5 \text{ Hz}, \text{C}^{19}\text{-H}), 3.95 \text{ (s, 3 H, ArOCH}_3), 3.65 \text{ (s, 3 H, CO}_2\text{CH}_3),}$ 3.30-2.81 (m, 4 H, C^8 - and C^{13} -H₂), 3.03 (s, 3 H, NCH₃), 2.82 (b s, 3 H, NCH₃); IR (neat) ν_{max} 2926, 1772, 1734, 1718, 1700, 1684, 1654, 1648, 1636, 1560, 1542, 1518, 1508, 1490, 1474, 1458, 1266 cm⁻¹; EIMS m/e (relative intensity) 532 (M⁺, 1), 473 (1), 397 (13), 367 (7), 350 (2), 91 (base); CIMS (isobutane) m/e 533 (M⁺ + H, base); CIHRMS m/e533.2278 (C₃₀H₃₂N₂O₇ requires 533.2288).

The 2D $^1H-^1H$ NOESY NMR spectrum of **33a** (CDCl₃, 500 MHz) displayed diagnostic NOE crosspeaks for Cl₅-H/Cl₆-H, Cl₅-H/Cl₃-H_{β}, Cl₅-H/Cl₂-H, Cl₈-H/Cl₉-H, Cl₈-H/Cl₇-H, Cl₈-H/Cl₃-H_{α}, Cl₇-H/Cl₉-H, Cl₅-H/Cl₄-OCH₃, Cl₅-H/Cl₆-H, Cl₇-H/Cl₈-H_{α}, Cl₇-H/Cl₇-H, Cl₇-H/Nl₉-

Chiral-phase HPLC analysis of 33a revealed a single peak; t_R 8.3 min; 1.0 mL/min, 25% EtOAc/hexane elution, 258-nm detection.

Methyl 4-Methoxy-12-[*N*-methyl-*N*-[(1,1-dimethylethoxy)carbonyl-amino]- N^{10} -methyl-11-oxo-2-azatricyclo[12.2.2.1^{3,7}]nonadeca-3,5,7(19),-14,16,17-hexaene-9-carboxylate (33b). The cyclization of 32b was conducted as detailed for 32a to afford 33b (22%)⁶⁰ as a pale-yellow solid: mp 36–44 °C; [α]²²_D –23° (c 0.24, MeOH); ¹H NMR (CDCl₃, 300 MHz) δ 7.29 (two d, 2 H total, J = 8 Hz, C¹⁵- and C¹⁸-H), 7.03 (two d, 2 H total, J = 8 Hz, C¹⁵- and C¹⁸-H), 7.03 (two d, 2 H total, J = 8 Hz, C⁶-H), 5.39 (dd, 1 H, J = 8 Hz, C⁵-H), 6.64 (dd, 1 H, J = 2, 12 Hz, C⁶-H), 5.39 (dd, 1 H, J = 2.2 Hz, C¹⁹-H), 4.80 (dd, 1 H, J = 2, 12 Hz, C⁹-H), 4.75 (d, 1 H, J = 2.2 Hz, C¹⁹-H), 3.95 (s, 3 H, ArOCH₃), 3.67 (s, 3 H, CO₂CH₃), 3.30–2.78 (m, 4 H, C⁸- and C¹³-H₂), 2.93 (s, 3 H, NCH₃), 2.81 (b s, 3 H, NCH₃), 1.49 (b s, 9 H, CO₂C(CH₃)₃); IR (KBr) ν_{max} 2925, 1772, 1734, 1718, 1700, 1654, 1618, 1576, 1560, 1540, 1508, 1491, 1436, 1340 cm⁻¹; CIMS (isobutane) m/e 499 (M⁺ + H, base); CIHRMS m/e 499.2424 (C₂₇H₃₄N₂O₇ requires 499.2444).

Chiral-phase HPLC analysis of 33b revealed a single peak; t_R 7.9 min; 1.0 mL/min, 25% EtOAc/hexane elution, 258-nm detection.

BOC-D-alanyl-L-alanyl-N, O-dimethyl-L-tyrosyl-L-alanyl-N-methyl-L-tyrosyl-N, O-dimethyl-L-tyrosine Cyclic $5^4 \rightarrow 6^3$ Ether, Methyl Ester (35). A solution of 33a (16.0 mg, 0.030 mmol) in 1 mL of dry THF was stirred with 10% Pd/C (2 mg, 13% wt equiv) under an atmosphere of H_2 at 25 °C (6 h). The reaction mixture was filtered through Celite (THF), concentrated in vacuo, and dried under vacuum to afford 34 (11.5 mg, 0.029 mmol), which was used directly in the following reaction.

A solution of 34 (11.5 mg, 0.029 mmol) in 0.5 mL of dry DMF was added to a solution of 17 (28.0 mg, 0.058 mmol, 2.0 equiv), EDCI (11.0 mg, 0.058 mmol, 2.0 equiv), and HOBt·H₂O (8.0 mg, 0.058 mmol, 2.0 equiv) in 0.5 mL of dry DMF at 25 °C. The reaction mixture was stirred at 25 °C (12 h), poured over water (5 mL), and extracted with EtOAc (2 × 3 mL). The combined EtOAc extract was washed with 10% aqueous HCl (3 mL), saturated aqueous NaHCO₃ (3 \times 5 mL), and saturated aqueous NaCl (5 mL), dried (MgSO₄), and concentrated in vacuo. Flash chromatography (SiO₂, 1 × 10 cm, Et₂O) afforded 35 (13.9 mg, 26.2 mg theoretical, 53%) as a clear yellow oil: ¹H NMR (CDCl₃, 300 MHz) δ 7.40 (dd, 1 H, J = 2, 8 Hz, Tyr⁵-ArH), 7.21 (dd, 1 H, J = 2, 8 Hz, Tyr^5 -ArH), 7.11 (dd, 2 H, J = 2, 8 Hz, Tyr^5 -ArH), 7.05 and 7.02 (two d, 2 H, J = 6.5 Hz, Tyr³-ArH), 6.82 and 6.80 (two d, 2 H, J = 6.5 Hz, Tyr^3 -ArH), 6.80 (d, 1 H, J = 8 Hz, Tyr^{6_a}), 6.64 (dd, 1 H, J = 2, 8 Hz, Tyr^{6_b}), 5.45 (b s, 1 H, NH), 4.83 (dd, J = 4, 10 Hz, α -H), 4.74 (d, 1 H, $J = 2.1 \text{ Hz}, \text{Tyr}^{6_a}$, 4.65 (dd, 1 H, J = 3, 12 Hz, α -H), 4.35 (p, 1 H, J

⁽⁶⁰⁾ Workup as detailed for 41 could be expected to further improve on this conversion.

= 6 Hz, α -H), 4.18 (m, 1 H, α -H), 4.00 (dd, 1 H, J = 5, 10 Hz, α -H), 3.95 (s, 3 H, Tyr⁶-O-Me), 3.78 and 3.76 (two s, 3 H, Tyr²-O-Me), 3.69 (s, 3 H, CO₂CH₃), 3.40 (dd, 1 H, J = 5, 10 Hz, α -H), 3.30–2.70 (m, 6 H, Tyr³,5.6- β -H), 2.93 (s, 3 H, NCH₃), 2.79 (s, 3 H, NCH₃), 2.44 (s, 3 H, NCH₃), 1.42 (s, 9 H, OC(CH₃)₃), 1.30 (d, 3 H, J = 6.8 Hz, Ala-CH₃), 1.28 (d, 3 H, J = 6.8 Hz, Ala-CH₃), 0.45 (d, 3 H, J = 6.8 Hz, Ala-CH₃); IR (neat) ν_{max} 3650, 3270, 1772, 1734, 1718, 1700, 1684, 1654, 1636, 1560, 1542, 1508, 1474, 1458, 1248 cm⁻¹.

Cyclo(D-alanyl-L-alanyl-N, O-dimethyl-L-tyrosyl-L-alanyl-N-methyl-L-tyrosyl-N, O-dimethyl-L-tyrosyl) Cyclic $S^4 \rightarrow 6^3$ Ether (RA-VII; 1). A solution of 35 (0.015 g, 0.017 mmol) in 0.5 mL of a 0.1 M solution of LiOH in THF/MeOH/ H_2O (3:1:1) was stirred at 25 °C (2 h). The reaction mixture was quenched with the addition of 0.5 mL of 10% aqueous HCl, and the mixture was extracted with EtOAc (3 × 0.5 mL). The combined organic layers were concentrated in vacuo and dried thoroughly to afford 36 (IR 3350, 1717, 1700, 1661 cm⁻¹). The crude acid 36 was stirred in 3 N HCl/EtOAc (1 mL) at 25 °C (1 h). The volatiles were removed in vacuo to afford 37 (0.013 g, 0.014 g theoretical yield, 92%) as a solid (IR 3350, 1698, 1660 cm⁻¹), which was used directly in the following reaction.

A solution of 37 (0.013 g, 0.014 mmol) in 2 mL of freshly distilled DMF was cooled to 0 °C and treated with NaHCO₃ (7.0 mg, 0.070 mmol, 5.0 equiv) and diphenyl phosphoroazidate (DPPA, 4 mg, 3 µL, 0.021 mmol, 1.5 equiv). The reaction mixture was stirred for 72 h (0 °C), poured over water (3 mL), and extracted with EtOAc (3 \times 3 mL). The combined EtOAc extracts were washed with water $(2 \times 1 \text{ mL})$, dried (MgSO₄), and concentrated in vacuo. Flash chromatography (SiO₂, 0.5 × 10 cm, 48:50:2 pentane/CH₂Cl₂/MeOH) afforded RA-VII (1, 6.2 mg, 10.8 mg theoretical, 58%) as a white powder: mp >300 °C (dec); $[\alpha]^{22}_{D}$ -222° (c 0.1, CHCl₃) [lit.³ $[\alpha]^{21}_{D}$ -229° (c 0.1, CHCl₃)]; R_f 0.23 (48:50:2 pentane/CH₂Cl₂/MeOH); ¹H NMR (CDCl₃, 300 MHz) δ 7.42 $(dd, 1 H, J = 2.4, 8.4 Hz, Tyr^{5\delta_a}), 7.27 (dd, 1 H, J = 2.3, 8.5 Hz, Tyr^{5\delta_b}),$ 7.20 (dd, 1 H, J = 2.4, 8.4 Hz, $Tyr^{5\epsilon_a}$), 7.05 (d, 2 H, J = 8.6 Hz, $Tyr^{3\delta}$), 6.87 (dd, 1 H, J = 2.4, 8.5 Hz, $Tyr^{5\epsilon_b}$), 6.83 (d, 2 H, J = 8.6 Hz, $Tyr^{3\epsilon}$), 6.80 (d, 1 H, J = 8.4 Hz, $Tyr^{6\epsilon_k}$), 6.70 (d, 1 H, J = 7.7 Hz, Ala^4 -NH), 6.58 (dd, 1 H, J = 1.9, 8.3 Hz, Tyr⁶⁸), 6.41 (d, 1 H, J = 6.6 Hz, Ala¹-NH), 6.08 (d, 1 H, J = 8.5 Hz, Ala²-NH), 5.41 (dd, 1 H, J = 3.2, 11.4 Hz, $Tyr^{5\alpha}$), 4.86 (p, 1 H, J = 7 Hz, $Ala^{2\alpha}$), 4.74 (p, 1 H, J = 7.2 Hz, Ala^{4 α}), 4.55 (dd, 1 H, J = 3.9, 11.8 Hz, Tyr^{6 α}), 4.34 (p, 1 H, J = 7 Hz, Ala^{1 α}), 4.32 (d, 1 H, J = 2.2 Hz, Tyr^{6 δ}_b), 3.93 (s, 3 H, Tyr⁶-O-Me), 3.79 (s, 3 H, Tyr³-O-Me), 3.67 (dd, 1 H, J = 8.5, 11.3 Hz, Tyr^{5 β_b}), 3.59 (dd, 1 H, J = 5.4, 10.2 Hz, Tyr^{3 α}), 3.36 (m, 2 H, Tyr^{3 β}), 3.14 (dd, 1 H, J =19, 11.8 Hz, $Tyr^{6\beta_b}$), 3.13 (s, 3 H, Tyr^5 -N-Me), 2.98 (dd, 1 H, J = 19, $3.9 \,\mathrm{Hz}, \mathrm{Tyr}^{6\beta_a}$), $2.84 \,\mathrm{(s, 3\,H, Tyr}^3-N-\mathrm{Me)}$, $2.69 \,\mathrm{(s, 3\,H, Tyr}^6-N-\mathrm{Me)}$, $2.63 \,\mathrm{ms}$ $(dd, 1 H, J = 2.9, 11.4 Hz, Tyr^{5\beta_a}), 1.35 (d, 3 H, J = 6.9 Hz, Ala^{2\beta}),$ 1.30 (d, 3 H, J = 6.9 Hz, Ala^{1 β}), 1.12 (d, 3 H, J = 6.6 Hz, Ala^{4 β}); ¹³C APT (CDC1₃, 75 MHz) Table IV; IR (KBr) ν_{max} 3500, 3390, 2932, 1636, 1586, 1514, 1446, 1412, 1376, 1340, 1264, 1248, 1210, 1180, 1160, 1128, 1094, 1032, 966, 944, 902, 866, 838, 802, 732 cm⁻¹; CIMS (isobutane) m/e 771 (M⁺ + H, 8), 263 (73), 235 (base); FABMS (glycerol/ thioglycerol, 1:1) m/e 771 (M⁺ + H, 37), 149 (base); FABHRMS m/e771.3727 ($C_{41}H_{50}N_6O_9$ requires 771.3718).

Cyclo(D-alanyl-L-alanyl-N,O-dimethyl-L-tyrosyl-L-alanyl-N-methyl-L-tyrosyl-N-methyl-L-tyrosyl) Cyclic $5^4 \rightarrow 6^3$ Ether (Deoxybouvardin; 2). A solution of RA-VII (1, 3.1 mg, 0.004 mmol) in dry CH₂Cl₂ was cooled to -78 °C and treated with BBr₃ (1.0 M solution in CH₂Cl₂, 8 μ L, 2.0 equiv). The reaction mixture was warmed gradually to room temperature over 3 h, poured over H₂O (1 mL), and extracted with Et₂O/THF/MeOH (1:1:1, 2 × 2 mL). The combined extracts were concentrated in vacuo. Flash chromatography (SiO₂, 0.5 × 4 cm, 5% MeOH/EtOAc) afforded 2 (1.7 mg, 3.0 mg theoretical, 57%) as a white solid: mp > 300 °C dec; $[\alpha]^{22}_D$ –219° (c 0.05, CHCl₃) [lit.³ $[\alpha]^{21}_D$ –225° (c 0.3, CHCl₃); R_f 0.16 (48:50:2 pentane/CH₂Cl₂/MeOH); HNMR (CDCl₃, 300 MHz) δ 7.43 (dd, 1 H, J = 2.0, 8.3 Hz, Tyr^{5 δ ₀}), 7.27 (dd, 1 H, J = 2.1, 8.0 Hz, Tyr^{5 δ ₀</sub>), 7.21 (dd, 1 H, J = 2.3, 8.3 Hz, Tyr^{5 δ ₀}), 7.04 (d, 2 H, J = 8.5 Hz, Tyr^{3 δ}), 6.86 (dd, 1 H, J = 2, 8 Hz, Tyr^{5 δ ₀}), 6.82 (d, 2 H, J = 8.5 Hz, Tyr^{3 δ}), 6.80 (d, 1 H, J = 8 Hz, Tyr^{6 ϵ ₀}), 6.69 (d, 1 H, J = 7.6 Hz, Ala⁴-NH),}

 $6.52 \text{ (dd, 1 H, } J = 1.8, 8.4 \text{ Hz, Tyr}^{6\delta_a}), 6.41 \text{ (d, 1 H, } J = 6.6 \text{ Hz, Ala-1}$ NH), 6.01 (d, 1 H, J = 8.5 Hz, Ala²-NH), 5.56 (s, 1 H, Tyr⁶-OH), 5.43 $(dd, 1 H, J = 2.5, 11 Hz, Tyr^{5\alpha}), 4.84 (p, 1 H, J = 7.1 Hz, Ala^{2\alpha}), 4.75$ $(p, 1 H, J = 7.1 Hz, Ala^{4\alpha}), 4.54 (dd, 1 H, J = 3.9, 11.9 Hz, Tyr^{6\alpha}), 4.35$ (p, 1 H, J = 7 Hz, Ala^{1 α}), 4.33 (d, 1 H, J = 1.8 Hz, Tyr^{6 δ_b}), 3.80 (s, 3 H, Tyr³-O-Me), 3.69 (dd, 1 H, J = 8, 11.0 Hz, Tyr^{5 β_b}), 3.59 (dd, 1 H, J = 5.5, 10.2 Hz, Tyr^{3 α}), 3.35 (m, 2 H, Tyr^{3 β}), 3.14 (dd, 1 H, J = 19, 11 Hz, $Tyr^{6\beta_a}$), 3.12 (s, 3 H, Tyr^5 -N-Me), 3.00 (dd, 1 H, J = 3.9, 19 Hz, $Tyr^{6\beta_b}$), 2.85 (s, 3 H, Tyr^3 -N-Me), 2.69 (s, 3 H, Tyr^6 -N-Me), 2.63 (dd, 1 H, J = 2.3, 11.0 Hz, Tyr^{5 β_a}), 1.36 (d, 3 H, J = 6.9 Hz, Ala^{2 β}), 1.31 (d, 3 H, J = 6.9 Hz, Ala^{1 β}), 1.12 (d, 3 H, J = 6.6 Hz, Ala^{4 β}); IR (KBr) ν_{max} 3677, 3651, 3420, 3301, 2950, 1660, 1514, 1457, 1376, 1249, 1178, 1130, 1100, 971, 940, 866, 802, 735 cm⁻¹; CIMS (isobutane) m/e 757 $(M^+ + H, base)$; FABMS (glycerol/thioglycerol, 1:1) m/e 757 $(M^+ + H, base)$ H, 27), 154 (base); FABHRMS m/e 757.3545 (C₄₀H₄₈N₆O₉ requires 757.3569).

3-Hydroxy-O-methyl-N-[4-iodo-N-methyl-N-[(1,1-dimethylethoxy)carbonyl]-L-phenylalanyl]-L-tyrosine Methyl Ester (40). A solution of 3919 (0.325 g, 1.44 mmol), EDCI (0.275 g, 1.44 mmol), HOBt·H₂O (0.194 g, 1.44 mmol), and 31b (0.583 g, 1.44 mmol) in 10 mL of dry DMF was stirred at 25 °C (12 h). The reaction mixture was poured into H₂O (30 mL) and extracted with EtOAc (30 mL). The organic phase was washed with 5% aqueous HCl (3 × 30 mL), saturated aqueous NaHCO₃ (3 × 30 mL), and saturated aqueous NaCl (30 mL), dried (MgSO₄), and concentrated in vacuo. Flash chromatography (SiO₂, 3×20 cm, 30%EtOAc/hexane) afforded 40 (0.815 g, 0.881 g theoretical, 92%) as a white foam: $[\alpha]^{22}D - 38.9^{\circ}$ (c 1.05, MeOH); ¹H NMR (CDCl₃, 300 MHz) δ 7.60 (d, 2 H, J = 8 Hz, $C^{3'}$ - and $C^{5'}$ -H), 6.95 (b d, 2 H, J =8 Hz, $C^{2'}$ - and $C^{6'}$ -H), 6.76 (d, 1 H, J = 8 Hz, C^{5} -H), 6.73 (d, 1 H, J= 1 Hz, C^2 -H), 6.66 (dd, 1 H, J = 8, 1 Hz, C^6 -H), 5.70 (d, 1 H, J = 6 Hz, NH), 4.88-4.70 (m, 2 H, CH₂CHNH and CH₂CHN(CH₃)), 3.87 (s, 3 H, ArOCH₃), 3.74 (two s, 3 H, CO₂CH₃), 3.32-2.72 (m, 4 H, 2 \times ArCH₂CH), 2.64 and 2.59 (two b s, 3 H total, NCH₃), 1.38 (b s, 9 H, $CO_2C(CH_3)_3$); ¹³C NMR (CDCl₃, 50 MHz) δ 171.8 (e), 146.5 (e), 145.9 and 144.7 (e), 137.6 (o), 131.2 (o), 128.6 (o), 126.3 (e), 124.5 (e), 120.6 (e), 117.0 (o), 115.4 (o), 112.1 (e), 110.9 (e), 91.7 (o), 80.7 (o), 58.9 (e), 56.0 (o) and 55.8 (o), 52.4 (o), 37.0 (e), 34.4 and 33.1 (o), 30.4 and 30.3 (e), 27.9 (o); IR (neat) ν_{max} 3400, 2972, 1742, 1702, 1656, 1502, 1484, 1440, 1390, 1366, 1320, 1274, 1144, 1008, 806 cm⁻¹; CIMS (isobutane) m/e 613 (M⁺ + H, base); CIHRMS m/e 613.1399 (C₂₆H₃₃-IN₂O₇ requires 613.1411).

Anal. Calcd: C, 50.99; H, 5.43; N, 4.57. Found: C, 50.62; H, 5.38; N, 4.31.

Methyl 4-Methoxy-12-[N-methyl-N-[(1,1-dimethylethoxy)carbonyl]amino]-11-oxo-2-azatricyclo[12.2.2.13,7]nonadeca-3,5,7(19),14,16,17hexaene-9-carboxylate (41). Method A: Methyllithium (1.4 M solution in hexane, 1.6 mL, 2.2 mmol) was added dropwise to a solution of CuI-(SBu₂)₂ (0.816 g, 2.2 mmol) in 20 mL of Et₂O at -78 °C. The brightyellow slurry was stirred well, and the solid was collected by centrifugation. The Et₂O was decanted, and the yellow precipitate was triturated at -78 °C with 20 mL of Et₂O. The Et₂O was removed, and the yellow precipitate was dissolved in 7 mL of collidine at -78 °C. A solution of 40 (0.540 g, 0.88 mmol) in 1 mL of dry collidine was added to the solution of methylcopper in collidine at -78 °C, and the reaction mixture was stirred for 1 h at 25 °C. Collidine (200 mL) was added, and the reaction mixture was warmed at 130 °C (bath) for 9 h. The cooled reaction mixture was concentrated in vacuo. Flash chromatography (SiO2, 2 × 15 cm, 30% EtOAc/hexane) afforded 41 (0.154 g, 0.427 g theoretical, 36%) as a clear yellow oil which solidified on standing: mp 149-152 °C; $[\alpha]^{22}$ D -6.7° (c 0.018, MeOH); ¹H NMR (CDCl₃, 300 MHz) δ 7.44 (b d, 1 H, $J = 8 \text{ Hz}, C^{15}\text{-H}$, 7.29 (dd, 1 H, $J = 2.2, 8.3 \text{ Hz}, C^{18}\text{-H}$), 7.10 (dd, 1 H, J = 2.3, 8.3 Hz, C^{16} -H), 6.98 (b d, 1 H, J = 8 Hz, C^{17} -H), 6.77 (d, $1 \text{ H}, J = 8.2 \text{ Hz}, \text{ C}^5\text{-H}), 6.69 \text{ (dd, } 1 \text{ H}, J = 1.8, 8.2 \text{ Hz}, \text{ C}^6\text{-H}), 5.87 \text{ (b)}$ d, 1 H, J = 8.1 Hz, NH), 5.14 (b d, 1 H, J = 1.4 Hz, C¹⁹-H), 4.58 (dd, $1 \text{ H}, J = 2, 12 \text{ Hz}, C^{12}\text{-H}), 4.20 \text{ (ddd}, 1 \text{ H}, J = 1.3, 8.1, 10.8 \text{ Hz}, C^9\text{-H}),$ $3.94 (s, 3 H, ArOCH_3), 3.66 (s, 3 H, CO_2CH_3), 3.27 (t, 1 H, J = 12 Hz,$ C^{13} - $H_{\alpha}H$), 3.00 (s, 3 H, NCH₃), 2.99 (m, 1 H, C^{13} - HH_{β} , obscured by NCH₃), 2.90 (dd, 1 H, J = 1.3, 16.3 Hz, C^8 -H_{α}), 2.80 (dd, 1 H, J = 11.0, 16.3 Hz, C^8 -H_{β}), 1.51 (s, 9 H, $CO_2C(CH_3)_3$);¹³C NMR (CDCl₃, 50 MHz) δ 171.9 (e), 169.6 (e), 157.3 (e), 152.6 (e), 147.0 (e), 135.0 (e), 133.7 (o), 124.7 (o), 121.9 (o), 114.9 (o), 111.7 (o), 80.9 (e), 61.4 (o), 56.3 (o), 53.5 (o), 52.6 (o), 35.6 (e), 34.7 (e), 29.7 (o), 28.6 (o); IR (neat) ν_{max} 3300, 2926, 1772, 1734, 1718, 1700, 1684, 1654, 1636, 1560, 1540, 1522, 1508, 1490, 1474, 1458, 1396, 1364, 1262, 1130 cm⁻¹; EIMS m/e(relative intensity) 484 (M⁺, 5), 428 (8), 383 (14), 353 (17), 298 (16), 282 (11), 227 (12), 57 (base); CIMS (isobutane) m/e 485 (M⁺ + H, base); EIHRMS m/e 484.2210 ($C_{26}H_{32}N_2O_7$ requires 484.2210).

¹H NMR (CDCl₃) with irradiation at 5.87 ppm (NH) led to the collapse of the signal at 5.14 ppm (C°-H) to a dd; irradiation at 5.14 ppm (C°-H) led to the collapse of the signal at 5.87 ppm (NH) to a broadened singlet and to the collapse of the signals at 2.90 (C⁸-H_α) and 2.80 (C⁸-H_β) to doublets. The ¹H-1 H NOESY NMR (CDCl₃) displayed diagnostic NOE crosspeaks for C¹⁵-H/C¹⁶-H, C¹⁵-H/C¹⁷-H, C¹⁵-H/C¹³-H_β, C¹⁸-H/C¹⁷-H, C¹⁸-H/C¹⁷-H, C¹⁸-H/C¹⁷-H, C¹⁸-H/C¹⁸-H_α, C⁵-H/C⁶-H, C⁵-H/C⁸-H_α, C¹²-H/NH, C⁹-H/NH, C⁸-H_β/NH, C⁹-H/C¹⁹-H, C¹⁹-H/C⁸-H_β, C¹³-H_β/C¹²-H, C⁹-H/C⁸-H_α, C¹³-H_β/C¹³-H_α, and C⁸-H_α/C⁸-H_β.

Method B: A solution of 40 (250 mg, 0.41 mmol) in 1 mL of dry collidine was added dropwise to a suspension of NaH (60% oil dispersion in mineral oil, 33 mg, 0.82 mmol, 2.0 equiv) in 1 mL of dry collidine under Ar at 0 °C, and the solution was allowed to stir for 10 min. The solution was treated with CuBr-SMe₂ (858 mg, 4.1 mmol, 10.0 equiv) and allowed to stir at 25 °C for 50 min before the mixture was diluted with dry degassed collidine to 0.004 M (100 mL) and warmed at 130 °C (bath) for 9 h. The cooled reaction mixture was concentrated in vacuo. The resulting residue was dissolved in EtOAc (30 mL) and saturated aqueous NH₄Cl (30 mL), and the aqueous phase was extracted with EtOAc (3 × 30 mL). The combined organic extracts were washed with saturated aqueous NH₄Cl (3 × 30 mL) and saturated aqueous NaCl (2 × 30 mL), dried (MgSO₄), and concentrated in vacuo. Flash chromatography (SiO₂, 2.5 × 15 cm, 20–40% EtOAc/hexane) afforded 41 (58.4 mg, 30%), recovered 40 (43.6 mg, 17%), and 46 (13.4 mg, 8%). 52

BOC-D-alanyl-L-alanyl-N,O-dimethyl-L-tyrosyl-L-alanyl-N-methyl-Ltyrosyl-O-methyl-L-tyrosine Cyclic 54 -> 63 Ether, Methyl Ester (43). A solution of 41 (23 mg, 0.047 mmol) in 1.5 mL of 3.0 M HCl/EtOAc was stirred at 25 °C (50 min). The reaction mixture was concentrated in vacuo, and the residue was triturated with Et₂O (3 × 1 mL) and dried under vacuum. The amine hydrochloride 42·HCl in 0.5 mL of DMF was added to a solution of 17 (25 mg, 0.047 mmol, 1.0 equiv), HOBt·H₂O (20 mg, 0.14 mmol, 3.0 equiv), EDCI (28 mg, 0.14 mmol, 3.0 equiv), and NaHCO₃ (32 mg, 0.38 mmol, 8 equiv) in 0.16 mL of DMF at 25 °C, and the mixture was stirred for 48 h (25 °C). The reaction mixture was poured over H₂O (5 mL), extracted with EtOAc (4 × 5 mL), washed with 5% aqueous HC1 (3 \times 3 mL), aqueous saturated NaHCO₃ (3 \times 3 mL), H2O, and saturated aqueous NaCl, dried (MgSO4), and concentrated in vacuo. Flash chromatography (SiO₂, 1×10 cm, 0-4% EtOH/EtOAc) afforded 43 (30 mg, 42 mg theoretical, 71%) as a yellow oil: H NMR (CDC1₃, 300 MHz) δ 7.43 (b d, 1 H, J = 8 Hz, Tyr⁵-ArH), 7.22 (d, 2 H, J = 8 Hz, Tyr⁵-ArH), 7.10 (d, 1 H, J = 8 Hz, Tyr⁵-ArH), 7.05 and 7.03 (two d, 2 H, J = 7 Hz, Tyr³-ArH), 6.80 (d, 2 H, J = 7 Hz, Tyr³-ArH), 6.75-6.50 (m, 2 H, Tyr^6 -ArH), 5.30-4.80 (m, 4 H, $4 \times \alpha$ -H), 5.18(b s, 1 H, Tyr^{6a}), 4.20 (m, 2 H, 2 × α -H), 3.96 and 3.94 (two s, 3 H, Tyr⁶-O-Me), 3.75 (s, 3 H, Tyr³-O-Me), 3.30 (m, 1 H, α -H), 3.29 and 3.25 (twos, 3 H, NCH₃), 3.20–2.70 (m, 6 H, Tyr^{3.5.6}- β -H), 2.91 and 2.85 (two s, 3 H, NCH₃), 1.41 (b s, 9 H, OC(CH₃)₃), 1.27 (d, 3 H, J = 7 Hz, Ala-CH₃), 1.09 (d, 3 H, J = 7 Hz, Ala-CH₃), 0.45 (d, 3 H, J = 7 Hz, Ala-CH₃); IR (neat) ν_{max} 3300, 2928, 1733, 1714, 1672, 1638, 1514, 1458, 1366, 1250, 1174, 1130, 1030 cm⁻¹; FABMS (glycerol/thioglycerol) m/e 889 (M⁺ + H, base); FABHRMS (NBA-CsI) m/e 1021.3375 (M + Cs^+ , $C_{46}H_{60}N_6O_{12}$ requires 1021.3324).

Cyclo(D-alanyl-L-alanyl-N, O-dimethyl-L-tyrosyl-L-alanyl-N-methyl-L-tyrosyl-O-methyl-L-tyrosyl) Cyclic $5^4 \rightarrow 6^3$ Ether (N^{29} -desmethyl RA-VII; 9). A solution of 43 (8.0 mg, 0.009 mmol) in 10 μ L of THF was treated with a solution of LiOOH (10 μ L, 2.7 M solution of LiOH in 30% H_2O_2) at 0 °C. The reaction mixture was stirred for 6 h (25 °C). The reaction mixture was quenched with the addition of solid sodium bisulfite (5.6 mg, 0.54 mmol, 6 equiv) followed by addition of H_2O (0.5 mL). The reaction mixture was diluted with THF (1 mL), and the organic phase was separated, washed with saturated aqueous NaCl (1 mL), dried (Na2-SO₄), and concentrated in vacuo to afford 44 (6.8 mg, 7.9 mg theoretical, 86%) as a yellow oil (IR 3349, 1718, 1700, 1658 cm⁻¹; FABHRMS (NBA) m/e 873.4098, $M-H^+$, $C_{45}H_{58}N_6O_{12}$ requires 873.4034.) which was used directly in the following reaction without purification.

A solution of 44 (6.4 mg, 0.008 mmol) in 3.0 M HC1/EtOAc (0.5 mL) was stirred at 25 °C (1 h). The volatiles were removed in vacuo, and the residue was dried thoroughly under vacuum to afford the amino acid hydrochloride salt 45-HCl (IR 3350, 1670, 1638 cm⁻¹). A solution of 45-HCl in 1.3 mL of dry DMF was cooled to 0 °C and treated with NaHCO₃ (4.0 mg, 0.04 mmol, 5.0 equiv) and DPPA (3.5 mg, 2.6 μ L, 0.012 mmol, 1.5 equiv). The reaction mixture was stirred at 0 °C (72 h), poured over $H_2O(2 \text{ mL})$, and extracted with EtOAc (3 × 2 mL). The combined EtOAc extracts were washed with H₂O (2 mL), dried (MgSO₄), and concentrated in vacuo. Flash chromatography (SiO2, 0.5 × 10 cm, 48:50:2 pentane/CH₂Cl₂/MeOH) afforded 9 (2.1 mg) as a tan powder: mp >300 °C dec; $[\alpha]^{22}_D$ -202° (c 0.05, CHCl₃); R_f 0.69 (48:50:2 pentane/CH₂Cl₂/MeOH); ¹H NMR (CDCl₃, 300 MHz) δ 7.40 (dd, 1 H, J = 2, 8 Hz, Tyr^{5 δ_a}), 7.25 (dd, 1 H, J = 2, 8 Hz, Tyr^{5 δ_b}), 7.19 (dd, 1 H, J = 2, 8 Hz, Tyr^{5 ϵ_a}), 7.02 (d, 2 H, J = 8.5 Hz, Tyr^{3 δ}), 6.83 (dd, 1 H, J = 2, 8 Hz, Tyr^{5 ϵ}_b), 6.80 (d, 2 H, J = 8.5 Hz, Tyr^{3 ϵ}), 6.78 (d, 1 H, $J = 8.4 \text{ Hz}, \text{Tyr}^{6\epsilon_a}$, 6.70 (d, 1 H, $J = 8 \text{ Hz}, \text{Ala}^4\text{-NH}$), 6.60 (dd, 1 H, $J = 2.2, 8.4 \text{ Hz}, \text{Tyr}^{6\delta_a}$), 6.40 (d, 1 H, $J = 6.6 \text{ Hz}, \text{Ala}^{\dagger}$ -NH), 6.08 (d, 1 H, J = 8.5 Hz, Ala²-NH), 5.83 (d, 1 H, J = 8 Hz, Tyr⁶-NH), 5.41 $(dd, 1 H, J = 3.2, 11.4 Hz, Tyr^{5\alpha}), 4.85 (p, 1 H, J = 7 Hz, Ala^{2\alpha}), 4.76$ $(d, 1 H, J = 2.2 Hz, Tyr^{6\delta_b}), 4.74 (p, 1 H, J = 7.2 Hz, Ala^{4\alpha}), 4.55 (ddd,$ 1 H, J = 4, 8, 10 Hz, Tyr^{6 α}), 4.32 (p, 1 H, J = 7 Hz, Ala^{1 α}), 3.93 (s, 3 H, Tyr^6 -O-Me), 3.78 (s, 3 H, Tyr^3 -O-Me), 3.67 (dd, 1 H, J = 8, 11 Hz, $Tyr^{5\beta_b}$), 3.60 (dd, 1 H, J = 5, 11 Hz, $Tyr^{3\alpha}$), 3.35 (m, 2 H, $Tyr^{3\beta}$), 3.17 (dd, 1 H, J = 19, 11 Hz, Tyr⁶⁸), 3.13 (s, 3 H, Tyr⁵-N-Me), 3.01 $(dd, 1 H, J = 19, 4.1 Hz, Tyr^{6\beta_n}), 2.83 (s, 3 H, Tyr^3-N-Me), 2.63 (dd,$ 1 H, J = 3, 11 Hz, Tyr^{5 β_a}), 1.34 (d, 3 H, J = 6.9 Hz, Ala^{2 β}), 1.30 (d, 3 H, J = 6.9 Hz, Ala^{1 β}), 1.11 (d, 3 H, J = 6.6 Hz, Ala^{4 β}); ¹³C NMR (Table IV); IR (KBr) ν_{max} 3390, 2930, 1638, 1586, 1445, 1412, 1380, 1262, 1250, 1180, 1159, 1094, 966, 838, 732 cm⁻¹; FABMS (glycerol/ thioglycerol, 1:1) m/e 757 (M⁺ + H, 89), 164 (base); FABHRMS m/e757.3753 (C₄₀H₄₈N₆O₉ requires 757.3561).

Acknowledgment. This work was assisted financially by the National Institutes of Health (Grant CA41101 to D.L.B.) and a Purdue University Cancer Center fellowship (D.Y., 1988–1989). We thank Dr. T. Inaba for generous samples of RA-VII and deoxybouvardin, Professor R. B. Bates for providing photocopies of the ¹H NMR of deoxybouvardin (250 MHz, CDCl₃), Professor J. Hoffmann for an authentic sample of deoxybouvardin, Professor H. Itokawa for an authentic sample of RA-VII, and Professor P. A. Kitos for the results of the in vitro cytotoxic assays.